from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core import numpy as np class ParameterTags(object): BIAS = 'BIAS' WEIGHT = 'WEIGHT' COMPUTED_PARAM = 'COMPUTED_PARAM' class ParameterInfo(object): def __init__( self, param_id, param, key=None, shape=None, length=None, grad=None, blob_copy=None): assert isinstance(param, core.BlobReference) self.param_id = param_id self.name = str(param) self.blob = param self.key = key self.shape = shape self.size = None if shape is None else np.prod(shape) self.length = max(1, length if length is not None else 1) self.grad = grad self._cloned_init_net = None # Optionally store equivalent copies of the blob # in different precisions (i.e. half and float copies) # stored as a dict of TensorProto.DataType -> BlobReference self.blob_copy = blob_copy # each param_info can have its own optimizer. It can be set within # OptimizerContext (caffe2/python/optimizer.py) self._optimizer = None @property def parameter(self): return self.blob @property def optimizer(self): return self._optimizer @optimizer.setter def optimizer(self, value): assert self._optimizer is None, "optimizer has already been set" self._optimizer = value def __str__(self): return self.name