import unittest import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, workspace from hypothesis import given, settings class TestHistogram(hu.HypothesisTestCase): @given(rows=st.integers(1, 1000), cols=st.integers(1, 1000), **hu.gcs_cpu_only) @settings(deadline=10000) def test_histogram__device_consistency(self, rows, cols, gc, dc): X = np.random.rand(rows, cols) bin_edges = list(np.linspace(-2, 10, num=10000)) op = core.CreateOperator("Histogram", ["X"], ["histogram"], bin_edges=bin_edges) self.assertDeviceChecks(dc, op, [X], [0]) def test_histogram__valid_inputs_0(self): workspace.FeedBlob( "X", np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0]) ) bin_edges = [-2.0, -1.0, 0.0, 2.0, 5.0, 9.0] net = core.Net("test_net") net.Histogram(["X"], ["histogram"], bin_edges=bin_edges) workspace.RunNetOnce(net) histogram_blob = workspace.FetchBlob("histogram") assert list(histogram_blob) == [2, 0, 4, 3, 1] @given(num_tensors=st.integers(1, 5), num_bin_edges=st.integers(2, 10000)) @settings(deadline=10000) def test_histogram__valid_inputs_1(self, num_tensors, num_bin_edges): self._test_histogram( [ np.random.rand(np.random.randint(1, 1000), np.random.randint(1, 1000)) for __ in range(num_tensors) ], list(np.logspace(-12, 5, num=num_bin_edges)), ) def test_histogram__empty_input_tensor(self): self._test_histogram([np.array([])], list(np.linspace(-2, 2, num=10))) def test_histogram__non_increasing_bin_edges(self): with self.assertRaisesRegex( RuntimeError, "bin_edges must be a strictly increasing sequence of values" ): self._test_histogram( [np.random.rand(100), np.random.rand(98)], [0.0, 0.2, 0.1, 0.1] ) def test_histogram__insufficient_bin_edges(self): with self.assertRaisesRegex( RuntimeError, "Number of bin edges must be greater than or equal to 2" ): self._test_histogram([np.random.rand(111)], [1.0]) def _test_histogram(self, tensors, bin_edges): total_size = 0 input_blob_names = [] for idx, tensor in enumerate(tensors): total_size += np.size(tensor) tensor_blob_name = f"X{idx}" workspace.FeedBlob(tensor_blob_name, tensor) input_blob_names.append(tensor_blob_name) output_name = "histogram" net = core.Net("test_net") net.Histogram(input_blob_names, [output_name], bin_edges=bin_edges) workspace.RunNetOnce(net) histogram_blob = workspace.FetchBlob(output_name) assert np.size(histogram_blob) == len(bin_edges) - 1 assert np.sum(histogram_blob) == total_size if __name__ == "__main__": global_options = ["caffe2"] core.GlobalInit(global_options) unittest.main()