# Owner(s): ["oncall: export"] # flake8: noqa import unittest from typing import Dict, List, Tuple import torch import torch._dynamo from torch._dynamo.test_case import run_tests, TestCase from torch._functorch.aot_autograd import aot_export_module from torch.export import export, export_for_training from torch.export._trace import _convert_ts_to_export_experimental from torch.export.experimental import _export_forward_backward from torch.export.graph_signature import OutputKind from torch.testing import FileCheck @unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "dynamo isn't supported") class TestExperiment(TestCase): def test_torchscript_module_export(self): class M(torch.nn.Module): def forward(self, x): return x.cos() + x.sin() model_to_trace = M() inps = (torch.randn(4, 4),) traced_module_by_torchscript = torch.jit.trace(M(), example_inputs=inps) exported_module = _convert_ts_to_export_experimental( traced_module_by_torchscript, inps ) self.assertTrue(torch.allclose(exported_module(*inps), model_to_trace(*inps))) def test_torchscript_module_export_single_input(self): class M(torch.nn.Module): def forward(self, x): return x.cos() + x.sin() model_to_trace = M() inps = torch.randn(4, 4) traced_module_by_torchscript = torch.jit.trace(M(), example_inputs=inps) exported_module = _convert_ts_to_export_experimental( traced_module_by_torchscript, inps ) self.assertTrue(torch.allclose(exported_module(inps), model_to_trace(inps))) def test_torchscript_module_export_various_inputs_with_annotated_input_names(self): def _check_equality_and_annotations(m_func, inps): # Original module. model_to_trace = m_func() # ExportedProgram from TorchScript module. traced_module_by_torchscript = torch.jit.trace( m_func(), example_inputs=inps ) exported_module = _convert_ts_to_export_experimental( traced_module_by_torchscript, inps ) # ExportedProgram from original module. original_exported_module = torch.export.export_for_training( m_func(), inps, strict=True ) # Check whether input annotations are the same as tracing the original module. orig_ph_name_list = [ n.name for n in original_exported_module.graph.nodes if n.op == "placeholder" ] ph_name_list = [ n.name for n in exported_module.graph.nodes if n.op == "placeholder" ] self.assertEqual(orig_ph_name_list, ph_name_list) # Check results equality. self.assertTrue( torch.allclose(exported_module(*inps), model_to_trace(*inps)) ) # Tuple class MTuple(torch.nn.Module): def forward(self, x: Tuple[torch.Tensor]): return x[0] + x[1] _check_equality_and_annotations(MTuple, ((torch.randn(4), torch.randn(4)),)) # List class MList(torch.nn.Module): def forward(self, x: List[torch.Tensor]): return x[0] + x[1] _check_equality_and_annotations(MList, ([torch.randn(4), torch.randn(4)],)) # Dict class MDict(torch.nn.Module): def forward(self, x: Dict[str, torch.Tensor]): return x["0"] + x["1"] _check_equality_and_annotations( MDict, ({"0": torch.randn(4), "1": torch.randn(4)},) ) def test_joint_basic(self) -> None: class Module(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(3, 3) self.loss = torch.nn.CrossEntropyLoss() def forward(self, x): return self.loss( self.linear(x).softmax(dim=0), torch.tensor([1.0, 0.0, 0.0]) ) m = Module() example_inputs = (torch.randn(3),) m(*example_inputs) ep = torch.export.export_for_training(m, example_inputs, strict=True) joint_ep = _export_forward_backward(ep) self.assertExpectedInline( str(joint_ep.graph_module.code).strip(), """\ def forward(self, p_linear_weight, p_linear_bias, c_lifted_tensor_0, x): view = torch.ops.aten.view.default(x, [1, 3]); x = None permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None addmm = torch.ops.aten.addmm.default(p_linear_bias, view, permute); p_linear_bias = permute = None view_1 = torch.ops.aten.view.default(addmm, [3]); addmm = None _softmax = torch.ops.aten._softmax.default(view_1, 0, False); view_1 = None alias = torch.ops.aten.alias.default(_softmax) alias_1 = torch.ops.aten.alias.default(alias); alias = None clone = torch.ops.aten.clone.default(c_lifted_tensor_0); c_lifted_tensor_0 = None _log_softmax = torch.ops.aten._log_softmax.default(_softmax, 0, False); _softmax = None alias_2 = torch.ops.aten.alias.default(_log_softmax) alias_3 = torch.ops.aten.alias.default(alias_2); alias_2 = None mul = torch.ops.aten.mul.Tensor(_log_softmax, clone); _log_softmax = None sum_1 = torch.ops.aten.sum.dim_IntList(mul, []); mul = None neg = torch.ops.aten.neg.default(sum_1); sum_1 = None div = torch.ops.aten.div.Scalar(neg, 1); neg = None full_like = torch.ops.aten.full_like.default(div, 1, pin_memory = False, memory_format = torch.preserve_format) div_1 = torch.ops.aten.div.Scalar(full_like, 1); full_like = None neg_1 = torch.ops.aten.neg.default(div_1); div_1 = None expand = torch.ops.aten.expand.default(neg_1, [3]); neg_1 = None mul_1 = torch.ops.aten.mul.Tensor(expand, clone); expand = clone = None alias_4 = torch.ops.aten.alias.default(alias_3); alias_3 = None alias_5 = torch.ops.aten.alias.default(alias_4); alias_4 = None exp = torch.ops.aten.exp.default(alias_5); alias_5 = None sum_2 = torch.ops.aten.sum.dim_IntList(mul_1, [0], True) mul_2 = torch.ops.aten.mul.Tensor(exp, sum_2); exp = sum_2 = None sub = torch.ops.aten.sub.Tensor(mul_1, mul_2); mul_1 = mul_2 = None alias_6 = torch.ops.aten.alias.default(alias_1); alias_1 = None alias_7 = torch.ops.aten.alias.default(alias_6); alias_6 = None mul_3 = torch.ops.aten.mul.Tensor(sub, alias_7); sub = None sum_3 = torch.ops.aten.sum.dim_IntList(mul_3, [0], True) mul_4 = torch.ops.aten.mul.Tensor(alias_7, sum_3); alias_7 = sum_3 = None sub_1 = torch.ops.aten.sub.Tensor(mul_3, mul_4); mul_3 = mul_4 = None view_2 = torch.ops.aten.view.default(sub_1, [1, 3]); sub_1 = None permute_1 = torch.ops.aten.permute.default(view_2, [1, 0]) mm = torch.ops.aten.mm.default(permute_1, view); permute_1 = view = None permute_2 = torch.ops.aten.permute.default(mm, [1, 0]); mm = None sum_4 = torch.ops.aten.sum.dim_IntList(view_2, [0], True); view_2 = None view_3 = torch.ops.aten.view.default(sum_4, [3]); sum_4 = None permute_3 = torch.ops.aten.permute.default(permute_2, [1, 0]); permute_2 = None return (div, permute_3, view_3)""", ) ep = joint_ep.run_decompositions() self.assertExpectedInline( str(ep.graph_module.code).strip(), """\ def forward(self, p_linear_weight, p_linear_bias, c_lifted_tensor_0, x): view = torch.ops.aten.view.default(x, [1, 3]); x = None permute = torch.ops.aten.permute.default(p_linear_weight, [1, 0]); p_linear_weight = None addmm = torch.ops.aten.addmm.default(p_linear_bias, view, permute); p_linear_bias = permute = None view_1 = torch.ops.aten.view.default(addmm, [3]); addmm = None _softmax = torch.ops.aten._softmax.default(view_1, 0, False); view_1 = None alias = torch.ops.aten.alias.default(_softmax) alias_1 = torch.ops.aten.alias.default(alias); alias = None clone = torch.ops.aten.clone.default(c_lifted_tensor_0); c_lifted_tensor_0 = None _log_softmax = torch.ops.aten._log_softmax.default(_softmax, 0, False); _softmax = None alias_2 = torch.ops.aten.alias.default(_log_softmax) alias_3 = torch.ops.aten.alias.default(alias_2); alias_2 = None mul = torch.ops.aten.mul.Tensor(_log_softmax, clone); _log_softmax = None sum_1 = torch.ops.aten.sum.dim_IntList(mul, []); mul = None neg = torch.ops.aten.neg.default(sum_1); sum_1 = None div = torch.ops.aten.div.Scalar(neg, 1); neg = None full_like = torch.ops.aten.full_like.default(div, 1, pin_memory = False, memory_format = torch.preserve_format) div_1 = torch.ops.aten.div.Scalar(full_like, 1); full_like = None neg_1 = torch.ops.aten.neg.default(div_1); div_1 = None expand = torch.ops.aten.expand.default(neg_1, [3]); neg_1 = None mul_1 = torch.ops.aten.mul.Tensor(expand, clone); expand = clone = None alias_4 = torch.ops.aten.alias.default(alias_3); alias_3 = None alias_5 = torch.ops.aten.alias.default(alias_4); alias_4 = None exp = torch.ops.aten.exp.default(alias_5); alias_5 = None sum_2 = torch.ops.aten.sum.dim_IntList(mul_1, [0], True) mul_2 = torch.ops.aten.mul.Tensor(exp, sum_2); exp = sum_2 = None sub = torch.ops.aten.sub.Tensor(mul_1, mul_2); mul_1 = mul_2 = None alias_6 = torch.ops.aten.alias.default(alias_1); alias_1 = None alias_7 = torch.ops.aten.alias.default(alias_6); alias_6 = None mul_3 = torch.ops.aten.mul.Tensor(sub, alias_7); sub = None sum_3 = torch.ops.aten.sum.dim_IntList(mul_3, [0], True) mul_4 = torch.ops.aten.mul.Tensor(alias_7, sum_3); alias_7 = sum_3 = None sub_1 = torch.ops.aten.sub.Tensor(mul_3, mul_4); mul_3 = mul_4 = None view_2 = torch.ops.aten.view.default(sub_1, [1, 3]); sub_1 = None permute_1 = torch.ops.aten.permute.default(view_2, [1, 0]) mm = torch.ops.aten.mm.default(permute_1, view); permute_1 = view = None permute_2 = torch.ops.aten.permute.default(mm, [1, 0]); mm = None sum_4 = torch.ops.aten.sum.dim_IntList(view_2, [0], True); view_2 = None view_3 = torch.ops.aten.view.default(sum_4, [3]); sum_4 = None permute_3 = torch.ops.aten.permute.default(permute_2, [1, 0]); permute_2 = None return (div, permute_3, view_3)""", ) def test_joint_dynamic(self) -> None: from torch.export import Dim class Module(torch.nn.Module): def __init__(self) -> None: super().__init__() self.y = torch.nn.Parameter(torch.randn(3)) def forward(self, x): x = torch.ones(x.shape[0], 3) return (self.y + x).sum() m = Module() example_inputs = (torch.randn(3),) m(*example_inputs) ep = torch.export.export_for_training( m, example_inputs, dynamic_shapes={"x": {0: Dim("x0")}}, strict=True ) _export_forward_backward(ep) def test_joint_cifar10_backwards(self) -> None: import torch.nn as nn import torch.nn.functional as F # From Pytorch's CIFAR10 example: # https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) self.loss = nn.CrossEntropyLoss() def forward(self, x, labels): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return self.loss(x, labels) net = Net() x = torch.randn(4, 3, 32, 32) labels = torch.ones(4, dtype=torch.int64) inputs = (x, labels) ep = export_for_training(net, inputs, strict=True) ep = _export_forward_backward(ep) def test_joint_loss_index(self): class Foo(torch.nn.Module): def __init__(self, index): super().__init__() self.l = torch.nn.Linear(4, 4) self.index = index def forward(self, x): x = self.l(x) x = x.sum() if self.index == 0: return x, -x.detach() else: return x.detach(), x inputs = (torch.randn(4, 4),) for i in [0, 1]: ep = export_for_training(Foo(i), inputs, strict=True) ep_joint = _export_forward_backward(ep, joint_loss_index=i) for j, spec in enumerate(ep_joint.graph_signature.output_specs): if i == j: self.assertTrue(spec.kind == OutputKind.LOSS_OUTPUT) else: self.assertTrue(spec.kind != OutputKind.LOSS_OUTPUT) def test_joint_buffer_input_mutations(self): class Foo(torch.nn.Module): def __init__(self): super().__init__() self.l = torch.nn.Linear(4, 4) self.register_buffer("buf", torch.randn(4)) self.loss = torch.nn.CrossEntropyLoss() def forward(self, x, label): x.add_(self.buf) x = self.l(x) self.buf.add_(2.0) return self.loss(x, label) inputs = ( torch.randn(4, 4), torch.randint(0, 4, (4,)), ) ep = export(Foo(), inputs) ep_joint = _export_forward_backward(ep) self.assertEqual(len(ep_joint.graph_signature.output_specs), 5) self.assertEqual( ep_joint.graph_signature.output_specs[0].kind, OutputKind.BUFFER_MUTATION, ) self.assertEqual( ep_joint.graph_signature.output_specs[0].target, "buf", ) self.assertEqual( ep_joint.graph_signature.output_specs[1].kind, OutputKind.USER_INPUT_MUTATION, ) self.assertEqual( ep_joint.graph_signature.output_specs[1].target, "x", ) self.assertEqual( ep_joint.graph_signature.output_specs[2].kind, OutputKind.LOSS_OUTPUT, ) if __name__ == "__main__": run_tests()