from typing import Type from torch import optim from .functional_adagrad import _FunctionalAdagrad from .functional_adam import _FunctionalAdam from .functional_adamw import _FunctionalAdamW from .functional_sgd import _FunctionalSGD from .functional_adadelta import _FunctionalAdadelta from .functional_rmsprop import _FunctionalRMSprop from .functional_rprop import _FunctionalRprop from .functional_adamax import _FunctionalAdamax # dict to map a user passed in optimizer_class to a functional # optimizer class if we have already defined inside the # distributed.optim package, this is so that we hide the # functional optimizer to user and still provide the same API. functional_optim_map = { optim.Adagrad: _FunctionalAdagrad, optim.Adam: _FunctionalAdam, optim.AdamW: _FunctionalAdamW, optim.SGD: _FunctionalSGD, optim.Adadelta: _FunctionalAdadelta, optim.RMSprop: _FunctionalRMSprop, optim.Rprop: _FunctionalRprop, optim.Adamax: _FunctionalAdamax, } def as_functional_optim(optim_cls: Type, *args, **kwargs): try: functional_cls = functional_optim_map[optim_cls] except KeyError: raise ValueError(f"Optimizer {optim_cls} does not have a functional counterpart!") return _create_functional_optim(functional_cls, *args, **kwargs) def _create_functional_optim(functional_optim_cls: Type, *args, **kwargs): return functional_optim_cls( [], *args, **kwargs, _allow_empty_param_list=True, )