from typing import Any, Optional import numpy as np from sklearn.tree import _tree # type: ignore[import-untyped] class DecisionTreeNode: def __init__( self, feature: Optional[str] = None, threshold: Optional[float] = None, left: Optional["DecisionTreeNode"] = None, right: Optional["DecisionTreeNode"] = None, class_probs: Any = None, num_samples: int = 0, node_id: int = 0, ) -> None: self.feature = feature self.threshold = threshold self.left = left self.right = right self.class_probs = class_probs self.num_samples = num_samples self.id = node_id def is_leaf(self) -> bool: return self.left is None or self.right is None class DecisionTree: """ Custom decision tree implementation that mimics some of the sklearn API. The purpose of this class it to be able to perform transformations, such as custom pruning, which does not seem to be easy with sklearn. """ def __init__(self, sklearn_tree: Any, feature_names: list[str]) -> None: self.feature_names = feature_names self.root = self._convert_sklearn_tree(sklearn_tree.tree_) self.classes_: list[str] = sklearn_tree.classes_ def _convert_sklearn_tree( self, sklearn_tree: Any, node_id: int = 0 ) -> DecisionTreeNode: class_probs = sklearn_tree.value[node_id][0] num_samples = sklearn_tree.n_node_samples[node_id] if sklearn_tree.feature[node_id] != _tree.TREE_UNDEFINED: feature_index = sklearn_tree.feature[node_id] feature = self.feature_names[feature_index] left = self._convert_sklearn_tree( sklearn_tree, sklearn_tree.children_left[node_id] ) right = self._convert_sklearn_tree( sklearn_tree, sklearn_tree.children_right[node_id] ) return DecisionTreeNode( feature=feature, threshold=sklearn_tree.threshold[node_id], left=left, right=right, class_probs=class_probs, num_samples=num_samples, node_id=node_id, ) else: return DecisionTreeNode( class_probs=class_probs, num_samples=num_samples, node_id=node_id ) def prune(self, df: Any, target_col: str, k: int) -> None: self.root = self._prune_tree(self.root, df, target_col, k) def _prune_tree( self, node: DecisionTreeNode, df: Any, target_col: str, k: int ) -> DecisionTreeNode: if node.is_leaf(): return node left_df = df[df[node.feature] <= node.threshold] right_df = df[df[node.feature] > node.threshold] # number of unique classes in the left and right subtrees left_counts = left_df[target_col].nunique() right_counts = right_df[target_col].nunique() # for ranking, we want to ensure that we return at least k classes, so if we have less than k classes in the # left or right subtree, we remove the split and make this node a leaf node if left_counts < k or right_counts < k: return DecisionTreeNode(class_probs=node.class_probs) assert node.left is not None, "expected left child to exist" node.left = self._prune_tree(node.left, left_df, target_col, k) assert node.right is not None, "expected right child to exist" node.right = self._prune_tree(node.right, right_df, target_col, k) return node def to_dot(self) -> str: dot = "digraph DecisionTree {\n" dot += ' node [fontname="helvetica"];\n' dot += ' edge [fontname="helvetica"];\n' dot += self._node_to_dot(self.root) dot += "}" return dot def _node_to_dot( self, node: DecisionTreeNode, parent_id: int = 0, edge_label: str = "" ) -> str: if node is None: return "" node_id = id(node) # Format class_probs array with line breaks class_probs_str = self._format_class_probs_array( node.class_probs, node.num_samples ) if node.is_leaf(): label = class_probs_str shape = "box" else: feature_name = f"{node.feature}" label = f"{feature_name} <= {node.threshold:.2f}\\n{class_probs_str}" shape = "oval" dot = f' {node_id} [label="{label}", shape={shape}];\n' if parent_id != 0: dot += f' {parent_id} -> {node_id} [label="{edge_label}"];\n' if not node.is_leaf(): assert node.left is not None, "expected left child to exist" dot += self._node_to_dot(node.left, node_id, "<=") assert node.right is not None, "expected right child to exist" dot += self._node_to_dot(node.right, node_id, ">") return dot def _format_class_prob(self, num: float) -> str: if num == 0: return "0" return f"{num:.2f}" def _format_class_probs_array( self, class_probs: Any, num_samples: int, max_per_line: int = 5 ) -> str: # add line breaks to avoid very long lines flat_class_probs = class_probs.flatten() formatted = [self._format_class_prob(v) for v in flat_class_probs] lines = [ formatted[i : i + max_per_line] for i in range(0, len(formatted), max_per_line) ] return f"num_samples={num_samples}\\n" + "\\n".join( [", ".join(line) for line in lines] ) def predict(self, X: Any) -> Any: predictions = [self._predict_single(x) for _, x in X.iterrows()] return np.array(predictions) def predict_proba(self, X: Any) -> Any: return np.array([self._predict_proba_single(x) for _, x in X.iterrows()]) def _get_leaf(self, X: Any) -> DecisionTreeNode: node = self.root while not node.is_leaf(): if X[node.feature] <= node.threshold: assert node.left is not None, "expected left child to exist" node = node.left else: assert node.right is not None, "expected right child to exist" node = node.right return node def _predict_single(self, x: Any) -> str: node = self._get_leaf(x) # map index to class name return self.classes_[np.argmax(node.class_probs)] def _predict_proba_single(self, x: Any) -> Any: node = self._get_leaf(x) return node.class_probs def apply(self, X: Any) -> Any: ids = [self._apply_single(x) for _, x in X.iterrows()] return np.array(ids) def _apply_single(self, x: Any) -> int: node = self._get_leaf(x) return node.id def codegen( self, dummy_col_2_col_val: dict[str, tuple[str, Any]], lines: list[str], unsafe_leaves: list[int], ) -> None: # generates python code for the decision tree def codegen_node(node: DecisionTreeNode, depth: int) -> None: indent = " " * (depth + 1) if node.is_leaf(): lines.append(handle_leaf(node, indent, unsafe_leaves)) else: name = node.feature threshold = node.threshold if name in dummy_col_2_col_val: (orig_name, value) = dummy_col_2_col_val[name] predicate = f"{indent}if str(context.get_value('{orig_name}')) != '{value}':" assert threshold == 0.5, ( f"expected threshold to be 0.5 but is {threshold}" ) else: predicate = ( f"{indent}if context.get_value('{name}') <= {threshold}:" ) lines.append(predicate) assert node.left is not None, "expected left child to exist" codegen_node(node.left, depth + 1) lines.append(f"{indent}else:") assert node.right is not None, "expected right child to exist" codegen_node(node.right, depth + 1) def handle_leaf( node: DecisionTreeNode, indent: str, unsafe_leaves: list[int] ) -> str: """ This generates the code for a leaf node in the decision tree. If the leaf is unsafe, the learned heuristic will return "unsure" (i.e. None). """ if node.id in unsafe_leaves: return f"{indent}return None" class_probas = node.class_probs return f"{indent}return {best_probas_and_indices(class_probas)}" def best_probas_and_indices(class_probas: Any) -> str: """ Given a list of tuples (proba, idx), this function returns a string in which the tuples are sorted by proba in descending order. E.g.: Given class_probas=[(0.3, 0), (0.5, 1), (0.2, 2)] this function returns "[(0.5, 1), (0.3, 0), (0.2, 2)]" """ # we generate a list of tuples (proba, idx) sorted by proba in descending order # idx is the index of a choice # we only generate a tuple if proba > 0 probas_indices_sorted = sorted( [ (proba, index) for index, proba in enumerate(class_probas) if proba > 0 ], key=lambda x: x[0], reverse=True, ) probas_indices_sorted_str = ", ".join( f"({value:.3f}, {index})" for value, index in probas_indices_sorted ) return f"[{probas_indices_sorted_str}]" codegen_node(self.root, 1)