from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np class TestSparseToDenseMask(TestCase): def test_sparse_to_dense_mask_float(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32)) workspace.FeedBlob( 'values', np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([[-1, 1, 3], [6, 7, -1]], dtype=np.float) self.assertEqual(output.shape, expected.shape) self.assertFalse(np.any(output - expected)) def test_sparse_to_dense_mask_string(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[999999999, 2, 6]) workspace.FeedBlob( 'indices', np.array([2, 4, 6, 1, 2, 999999999, 2], dtype=np.int32)) workspace.FeedBlob( 'values', np.array(['1', '2', '3', '4', '5', '6', '7'], dtype=np.str)) workspace.FeedBlob('default', np.array('-1', dtype=np.str)) workspace.FeedBlob('lengths', np.array([3, 4], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([['-1', '1', '3'], ['6', '7', '-1']], dtype=np.str) self.assertEqual(output.shape, expected.shape) self.assertTrue(np.all(np.equal(output, expected))) def test_sparse_to_dense_mask_empty_lengths(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default', 'lengths'], ['output'], mask=[1, 2, 6]) workspace.FeedBlob('indices', np.array([2, 4, 6], dtype=np.int32)) workspace.FeedBlob('values', np.array([1, 2, 3], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.FeedBlob('lengths', np.array([], dtype=np.int32)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([-1, 1, 3], dtype=np.float) self.assertEqual(output.shape, expected.shape) self.assertFalse(np.any(output - expected)) def test_sparse_to_dense_mask_no_lengths(self): op = core.CreateOperator( 'SparseToDenseMask', ['indices', 'values', 'default'], ['output'], mask=[1, 2, 6]) workspace.FeedBlob('indices', np.array([2, 4, 6], dtype=np.int32)) workspace.FeedBlob('values', np.array([1, 2, 3], dtype=np.float)) workspace.FeedBlob('default', np.array(-1, dtype=np.float)) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('output') expected = np.array([-1, 1, 3], dtype=np.float) self.assertEqual(output.shape, expected.shape) self.assertFalse(np.any(output - expected))