""" PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes with test_functionalization_with_native_python_assertion) """ # Owner(s): ["module: dynamo"] import unittest from typing import List, Set import operator import torch from torch.testing._internal.common_utils import run_tests, TestCase from torch.testing import FileCheck from torch._dynamo.eval_frame import is_dynamo_supported from torch._export import export from torch._export.passes import ( ReplaceViewOpsWithViewCopyOpsPass, ) from torch._export.passes.replace_view_ops_with_view_copy_ops_pass import ( is_view_op, get_view_copy_of_view_op, ) from torch._export.passes.functionalize_side_effectful_ops_pass import ( _FunctionalizeSideEffectfulOpsPass, ) from functorch.experimental.control_flow import cond from torch.fx.passes.operator_support import OperatorSupport from torch.fx.passes.infra.partitioner import Partition from torch.utils import _pytree as pytree def count_call_function(graph: torch.fx.Graph, target: torch.ops.OpOverload) -> int: count = 0 for node in graph.nodes: if node.op == "call_function" and node.target == target: count += 1 return count class _AddOperatorSupport(OperatorSupport): def is_node_supported(self, submodules, node: torch.fx.Node) -> bool: return node.op == "call_function" and node.target in {operator.add} class _AtenAddOperatorSupport(OperatorSupport): def is_node_supported(self, submodules, node: torch.fx.Node) -> bool: return node.op == "call_function" and node.target in { torch.ops.aten.add.Tensor } def _to_partition_names(partitions: List[Partition]) -> List[Set[str]]: return [{n.name for n in p.nodes} for p in partitions] def _get_output_names(gm: torch.fx.GraphModule) -> List[str]: output_node = next(n for n in gm.graph.nodes if n.op == "output") args = pytree.tree_leaves(output_node.args) # if isinstance(args, tuple) and len(args) == 1: # args = args[0] return [str(arg) for arg in args] @unittest.skipIf(not is_dynamo_supported(), "Dynamo not supported") class TestPasses(TestCase): def test_runtime_assert_one_dim(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.cos() x = torch.zeros(2, 2, 3) dim1_x = torch.export.Dim("dim1_x", min=2, max=6) ep = torch.export.export(M(), (x,), dynamic_shapes={"x": {1: dim1_x}}) with self.assertRaisesRegex(RuntimeError, "is outside of specified dynamic range"): ep(torch.zeros(2, 7, 3)) self.assertEqual(ep(torch.ones(2, 4, 3)), M().forward(torch.ones(2, 4, 3))) def test_runtime_assert_multiple_dims(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return x.cos().sum() + y.sin().sum() x = torch.zeros(4, 2, 3) y = torch.zeros(5, 5, 5) dim1_x = torch.export.Dim("dim1_x", min=2, max=6) dim0_x, dim0_y = torch.export.dims("dim0_x", "dim0_y", min=3) ep = torch.export.export( M(), (x, y), dynamic_shapes={"x": {0: dim0_x, 1: dim1_x}, "y": {0: dim0_y}} ) with self.assertRaisesRegex(RuntimeError, "is outside of specified dynamic range"): ep(torch.zeros(4, 7, 3), torch.ones(5, 5, 5)) with self.assertRaisesRegex(RuntimeError, "is outside of specified dynamic range"): ep(torch.zeros(4, 2, 3), torch.ones(2, 5, 5)) def test_runtime_assert_some_dims_not_specified(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return x.cos().sum() + y.sin().sum() x = torch.zeros(4, 2, 3) y = torch.zeros(5, 5, 5) dim1_x = torch.export.Dim("dim1_x", min=2, max=6) dim0_x = torch.export.Dim("dim0_x", min=3) ep = torch.export.export( M(), (x, y), dynamic_shapes={"x": {0: dim0_x, 1: dim1_x}, "y": None} ) with self.assertRaisesRegex(RuntimeError, "is outside of specified dynamic range"): ep(torch.zeros(4, 7, 3), torch.ones(5, 5, 5)) # y is specialized to 5 with self.assertRaisesRegex( RuntimeError, r"shape\[0\] is specialized at 5" ): ep(torch.zeros(4, 2, 3), torch.ones(2, 5, 5)) # Since we didn't insert the constraint for x[1] >= 2, it should work for case where x[1] == 1 gm_result_for_1_size = ep(torch.ones(3, 1, 3), torch.ones(5, 5, 5)) eager_result_for_1_size = M().forward(torch.ones(3, 1, 3), torch.ones(5, 5, 5)) self.assertEqual(gm_result_for_1_size, eager_result_for_1_size) def test_runtime_assert_some_inps_not_used(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return y.cos().sum() x = torch.zeros(4, 2, 3) y = torch.zeros(5, 5, 5) dim1_y = torch.export.Dim("dim1_y", min=3, max=6) ep = torch.export.export(M(), (x, y), dynamic_shapes={"x": None, "y": {1: dim1_y}}) with self.assertRaisesRegex(RuntimeError, r"shape\[1\] is specialized at 2"): ep(torch.zeros(4, 7, 3), torch.ones(5, 5, 5)) # y is specialized to 5 with self.assertRaisesRegex( RuntimeError, r"shape\[0\] is specialized at 5" ): ep(torch.zeros(4, 2, 3), torch.ones(2, 5, 5)) # Since we didn't insert the constraint for x[1] >= 2, it should work for case where x[1] == 1 gm_result_for_1_size = ep(torch.zeros(4, 2, 3), torch.ones(5, 5, 5)) eager_result_for_1_size = M().forward(torch.zeros(4, 2, 3), torch.ones(5, 5, 5)) self.assertEqual(gm_result_for_1_size, eager_result_for_1_size) def test_view_to_view_copy(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): z = x.view(x.shape) return z.cos().sum() x = torch.zeros(4, 2, 3) ep = export(M(), (x,)) self.assertEqual(count_call_function(ep.graph, torch.ops.aten.view.default), 1) ep = ep._transform(ReplaceViewOpsWithViewCopyOpsPass()) self.assertEqual(count_call_function(ep.graph, torch.ops.aten.view.default), 0) def test_functionalization_with_view_copy(self) -> None: def foo(x): y = x + 4 y.add_(4) z = y.view(y.shape) return x.cos() + z.cos() x = torch.zeros(4, 2, 3) ep = export(foo, (x,))._transform(ReplaceViewOpsWithViewCopyOpsPass()) # After this pass, there shouldn't be any view nodes in the graph self.assertTrue(count_call_function(ep.graph, torch.ops.aten.view.default) == 0) self.assertTrue(count_call_function(ep.graph, torch.ops.aten.view_copy.default) > 0) def test_views_op_having_view_copy(self) -> None: schemas = torch._C._dispatch_get_registrations_for_dispatch_key("") aten_schemas = [s[6:] for s in schemas if s.startswith("aten::")] for aten_schema in aten_schemas: val = aten_schema.split(".") assert len(val) <= 2 name = "" overload = "" if len(val) == 1: name = val[0] overload = "default" else: name, overload = val[0], val[1] op_overload = getattr(getattr(torch.ops.aten, name), overload) if torch.Tag.core in op_overload.tags and is_view_op(op_overload._schema): self.assertIsNotNone(get_view_copy_of_view_op(op_overload._schema)) def test_runtime_assert_inline_constraints_for_item(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): b = x.item() torch._constrain_as_value(b, min=2, max=5) return b x = torch.tensor([2]) mod = M() ep = export(mod, (x,)) with self.assertRaisesRegex(RuntimeError, r"_local_scalar_dense is outside of inline constraint \[2, 5\]."): ep(torch.tensor([6])) new_inp = torch.tensor([5]) self.assertEqual(mod(new_inp), ep(new_inp)) def test_runtime_assert_inline_constraints_for_nonzero(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): b = x.nonzero() torch._constrain_as_value(b.shape[0], min=3, max=5) return b x = torch.tensor([2, 1, 2, 3, 5, 0]) mod = M() dim0_x = torch.export.Dim("dim0_x") ep = torch.export.export(mod, (x,), dynamic_shapes={"x": {0: dim0_x}}) num_assert = count_call_function(ep.graph, torch.ops.aten._assert_async.msg) num_scalar_tensor = count_call_function( ep.graph, torch.ops.aten.scalar_tensor.default ) self.assertEqual(num_assert, 2) self.assertEqual(num_scalar_tensor, 2) with self.assertRaisesRegex( RuntimeError, r"nonzero.shape\[0\] is outside of inline constraint \[3, 5\]." ): ep(torch.tensor([1, 1, 0, 0, 0])) with self.assertRaisesRegex( RuntimeError, r"nonzero.shape\[0\] is outside of inline constraint \[3, 5\]." ): ep(torch.ones(6)) new_inp = torch.tensor([1, 1, 1, 1]) self.assertEqual(mod(new_inp), ep(new_inp)) def test_runtime_assert_inline_constraints_for_cond(self) -> None: class M(torch.nn.Module): def __init__(self): super().__init__() def forward(self, pred, x, y): def true_fn(x, y): b = x.item() torch._constrain_as_value(b, min=2, max=5) return x - b def false_fn(x, y): c = y.item() torch._constrain_as_value(c, min=2, max=5) return y - c ret = cond(pred, true_fn, false_fn, [x, y]) return ret x = torch.tensor([2]) y = torch.tensor([5]) mod = M() ep = export(mod, (torch.tensor(True), x, y)) with self.assertRaisesRegex(RuntimeError, "is outside of inline constraint \\[2, 5\\]."): ep(torch.tensor(False), torch.tensor([6]), torch.tensor([6])) def test_functionalize_inline_contraints(self) -> None: def f(x): a = x.item() torch._constrain_as_value(a, 4, 7) return torch.empty((a, 4)) ep = torch._export.export(f, (torch.tensor([7]),)) gm = ep.graph_module FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 1, exactly=True, ).run(gm.code) # TODO(ycao): ExportedProgram._transform() forbids changes to number # of inputs/outputs for now. When it supports that better, change this # back to using ExportedProgram._transform() gm = _FunctionalizeSideEffectfulOpsPass()(ep.graph_module).graph_module with self.assertRaisesRegex( RuntimeError, r"_local_scalar_dense is outside of inline constraint \[4, 7\]", ) as cm: gm(torch.tensor([20])) inp = torch.tensor([5]) res, dep_token = gm(inp) self.assertEqual(res.shape, torch.Size([5, 4])) self.assertEqual(dep_token.shape, torch.Size([])) FileCheck().check_count( "torch.ops.aten._functional_sym_constrain_range", 1, exactly=True ).run(gm.code) FileCheck().check_count( "torch.ops.aten.sym_constrain_range.default", 0, exactly=True ).run(gm.code) if __name__ == '__main__': run_tests()