#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Tests go in torch::jit namespace torch { namespace jit { TEST(LiteInterpreterTest, UpsampleNearest2d) { Module m("m"); m.define(R"( def forward(self, input: Tensor, scale:float): return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale)) )"); std::vector inputs; inputs.emplace_back(torch::rand({1, 3, 128, 128})); inputs.emplace_back(at::Scalar(2.0)); auto ref = m.forward(inputs); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; res = bc.forward(inputs); auto resd = res.toTensor(); auto refd = ref.toTensor(); ASSERT_TRUE(resd.equal(refd)); } TEST(LiteInterpreterTest, CheckAttrAccess) { Module m("m"); m.register_attribute("mobile_optimized", BoolType::get(), true); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); bool mobile_optimized = bc.attr("mobile_optimized", false).toBool(); AT_ASSERT(mobile_optimized); m.setattr("mobile_optimized", false); ss = std::stringstream(); m._save_for_mobile(ss); bc = _load_for_mobile(ss); mobile_optimized = bc.attr("mobile_optimized", false).toBool(); AT_ASSERT(!mobile_optimized); } TEST(LiteInterpreterTest, MethodInvocation) { // NOLINT (use =delete in gtest) const std::vector test_programs{ // test invoking a method with default parameter R"( def test_func(self, x, b : int = 4): return self.foo + x + b )", // inner method call with default parameter (gets inlined) R"( def add_with_default_arg(self, x, b : int = 4): return self.foo + x + b def test_func(self, x): return self.add_with_default_arg(x) # invoke method w/ default arg )", // simple method call R"( def test_func(self, x): b = 4 return self.foo + x + b )", }; for (const auto& test_program : test_programs) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(test_program); const int fortyTwo = 42; // (keep linter happy) auto minput = fortyTwo * torch::ones({}); auto ref = m.run_method("test_func", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); const auto& test_func = bc.get_method("test_func"); IValue res; for (int i = 0; i < 3; ++i) { res = test_func({minput}); } auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } } TEST(LiteInterpreterTest, Conv) { auto s = std::getenv("PYTORCH_TEST_WITH_TSAN"); if (s && strcmp(s, "1") == 0) return; std::vector inputs; Module m("m"); m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false); m.register_parameter("bias", torch::ones({20}), false); m.define(R"( def forward(self, input): return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True) )"); // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace) inputs.push_back(torch::ones({1, 1, 28, 28})); auto outputref = m.forward(inputs).toTensor(); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { res = bc.get_method("forward")(inputs); } auto output = res.toTensor(); AT_ASSERT(outputref.dim() == output.dim()); AT_ASSERT( outputref[0][0][0][0].item() == output[0][0][0][0].item()); } TEST(LiteInterpreterTest, Inline) { Module m("m"); m.define(R"JIT( def foo1(self, x): return x + 1 def foo2(self, x): return self.foo1(x) + 2 def foo3(self, x): return self.foo2(x) + 3 )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("foo3")(inputs); AT_ASSERT(output.toTensor().item() == 7.0); } TEST(LiteInterpreterTest, Tuple) { Module m("m"); m.define(R"JIT( def foo(self, x): return (1, 2, x + 3) def forward(self, x): tuple = self.foo(x) return tuple )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("forward")(inputs); AT_ASSERT(output.toTuple()->elements()[1].toInt() == 2); } TEST(LiteInterpreterTest, Dict) { Module m("m"); m.define(R"JIT( def foo(self, x): return {"result": x + 1} def forward(self, x): d = self.foo(x) return d )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("forward")(inputs); AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2); } TEST(LiteInterpreterTest, PrimOverload) { /* // temporarily disabled script::Module m("m"); m.define(R"JIT( def forward(self, x): result = [1, 2] result.append(3) return result )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("forward")(inputs); AT_ASSERT(output.toIntList()[2] == 3); */ } TEST(LiteInterpreterTest, Prim) { Module m("m"); m.define(R"JIT( def forward(self, x): return int(x) )JIT"); std::vector inputs; auto minput = 3.5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.run_method("forward", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto bcinputs = inputs; res = bc.get_method("forward")(bcinputs); } auto resi = res.toInt(); auto refi = ref.toInt(); AT_ASSERT(resi == refi); } TEST(LiteInterpreterTest, PrimScalar) { Module m("m"); m.define(R"JIT( def forward(self, x): return int(x.item()) )JIT"); std::vector inputs; auto minput = 3.5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.run_method("forward", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto bcinputs = inputs; res = bc.get_method("forward")(bcinputs); } auto resi = res.toInt(); auto refi = ref.toInt(); AT_ASSERT(resi == refi); } TEST(LiteInterpreterTest, LoadOrigJit) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def forward(self, x): b = 4 return self.foo + x + b )"); std::stringstream ss; m.save(ss); ASSERT_THROWS_WITH_MESSAGE(_load_for_mobile(ss), "file not found"); } TEST(LiteInterpreterTest, WrongMethodName) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add(self, x): b = 4 return self.foo + x + b )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); ASSERT_THROWS_WITH_MESSAGE( bc.get_method("forward")(inputs), "is not defined"); } TEST(LiteInterpreterTest, SetState) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def __getstate__(self): return self.foo + self.foo def __setstate__(self, a): self.foo = a def forward(self, x): b = 4 return self.foo + x + b )"); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); std::stringstream ms; m.save(ms); auto loaded_m = load(ms); auto ref = loaded_m.run_method("forward", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto bcinputs = inputs; res = bc.get_method("forward")(bcinputs); } auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } class TorchBindLiteInterpreterTestStruct : public torch::jit::CustomClassHolder { public: std::string get(at::Tensor t) { std::stringstream ss; ss << "Hello! Your tensor has "; ss << t.numel(); ss << " elements!"; return ss.str(); } }; namespace { struct ClassNamespaceValue : public SugaredValue { explicit ClassNamespaceValue(c10::QualifiedName name) : basename_(std::move(name)) {} std::shared_ptr attr( const SourceRange& loc, GraphFunction& m, const std::string& name) override { const auto fullName = c10::QualifiedName(basename_, name); // Check to see if it is a custom class. if (auto custom_class = getCustomClass(fullName.qualifiedName())) { return std::make_shared(custom_class); } // If it's not a custom class, assume it's another namespace // NOLINTNEXTLINE(performance-move-const-arg) return std::make_shared(std::move(fullName)); } std::string kind() const override { return "Class Namespace"; } private: c10::QualifiedName basename_; }; struct TestModuleResolver : public Resolver { std::shared_ptr resolveValue( const std::string& name, GraphFunction& m, const SourceRange& loc) override { if (name == "torch") { return std::make_shared("aten"); } else if (name == "__torch__") { return std::make_shared(c10::QualifiedName(name)); } return nullptr; } TypePtr resolveType(const std::string& name, const SourceRange& loc) override { return nullptr; } }; } // namespace TEST(LiteInterpreterTest, BuiltinClass) { script::Module m("m"); auto cls = getCustomClass( "__torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest"); TORCH_INTERNAL_ASSERT(cls); c10::intrusive_ptr obj_holder; m.register_attribute("my_obj", cls, IValue::make_capsule(obj_holder)); m.register_parameter("foo", torch::ones({}), false); m.define( R"( def __getstate__(self): return 1 def __setstate__(self, a): self.my_obj = __torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest() def forward(self, x) -> str: return self.my_obj.get(x) )", std::make_shared()); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); auto res = bc.get_method("forward")(std::vector{torch::zeros({3, 4})}); const auto& str = res.toStringRef(); std::string expected = "Hello! Your tensor has 12 elements!"; AT_ASSERT(str == expected); } TEST(LiteInterpreterTest, BuiltinFunction) { script::Module m("m"); auto custom_class_obj = make_custom_class(); m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj); m.define(R"( def forward(self, x) -> str: return self.my_obj.get(x) )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); auto res = bc.get_method("forward")(std::vector{torch::zeros({3, 4})}); // NOLINTNEXTLINE(performance-unnecessary-copy-initialization) auto str = res.toStringRef(); std::string expected = "Hello! Your tensor has 12 elements!"; AT_ASSERT(str == expected); } #if !defined FB_XPLAT_BUILD TEST(LiteInterpreterTest, GetRuntimeByteCodeVersion) { auto runtime_bytecode_version = _get_runtime_bytecode_version(); AT_ASSERT( runtime_bytecode_version == caffe2::serialize::kMaxSupportedBytecodeVersion); } /** * The test below is disarmed for FB internal xplat builds since * BUCK requires us to pass in the script_module_v4.ptl file in * as a resource dependency of the build rule for this file, and * we would need to access it via the C++ Resources API instead * of directly reading from disk (which is what the open source * build/run does). */ TEST(LiteInterpreterTest, GetByteCodeVersion) { std::string filePath(__FILE__); auto test_model_file_v4 = filePath.substr(0, filePath.find_last_of("/\\") + 1); test_model_file_v4.append("script_module_v4.ptl"); auto version_v4 = _get_model_bytecode_version(test_model_file_v4); AT_ASSERT(version_v4 == 4); } #endif // !defined(FB_XPLAT_BUILD) TEST(LiteInterpreterTest, GetContainTypes) { Module m("m"); m.define(R"( def forward(self): return 3 )"); std::stringstream ss; m._save_for_mobile(ss, {}, true); auto contained_types = _get_mobile_model_contained_types(ss); AT_ASSERT(contained_types.size() >= 0); } namespace { void compareModelOutput( c10::ArrayRef actual_result_list, const std::vector& expect_result_list) { AT_ASSERT(actual_result_list.size() == expect_result_list.size()); AT_ASSERT(actual_result_list[0].toTensor().equal(expect_result_list[0])); AT_ASSERT( actual_result_list[1].toTensor().dim() == expect_result_list[1].dim()); AT_ASSERT(actual_result_list[2].toTensor().equal(expect_result_list[2])); AT_ASSERT(actual_result_list[3].toTensor().equal(expect_result_list[3])); } void runAndCheckTorchScriptModel( std::stringstream& input_model_stream, const std::vector& input_data, const std::vector& expect_result_list, const int64_t expect_version) { auto actual_version = _get_model_bytecode_version(input_model_stream); AT_ASSERT(actual_version == expect_version); // Load and run the backport model, then compare the result with expect // result Module m_mobile = load(input_model_stream); auto actual_result = m_mobile.forward(input_data); const auto& actual_result_list = actual_result.toTuple()->elements(); compareModelOutput(actual_result_list, expect_result_list); } void runAndCheckBytecodeModel( std::stringstream& input_model_stream, const std::vector& input_data, const std::vector& expect_result_list, const int64_t expect_version) { auto actual_version = _get_model_bytecode_version(input_model_stream); AT_ASSERT(actual_version == expect_version); // Load and run the backport model, then compare the result with expect // result Module m_mobile = load(input_model_stream); auto actual_result = m_mobile.forward(input_data); const auto& actual_result_list = actual_result.toTuple()->elements(); compareModelOutput(actual_result_list, expect_result_list); } void backportAllVersionCheck( std::stringstream& test_model_file_stream, std::vector& input_data, std::vector& expect_result_list, const int64_t expect_from_version) { auto from_version = _get_model_bytecode_version(test_model_file_stream); AT_ASSERT(from_version == expect_from_version); // Backport script_module_v5.ptl to an older version constexpr int64_t minimum_to_version = 4; int64_t current_to_version = from_version - 1; // Verify all candidate to_version work as expected. All backport to version // larger than minimum_to_version should success. while (current_to_version >= minimum_to_version) { // Do not declare std::stringstream oss outside of the while loop as // oss.clear() doesn't reset the stream content, only clears out error state // flag in stringstream causing a problematic stream. Instead, it's cleaner // and safer to just declare a new std::stringstream one and swap them. std::stringstream oss; bool backPortSuccess = _backport_for_mobile(test_model_file_stream, oss, current_to_version); AT_ASSERT(backPortSuccess); // Check backport model version auto backport_version = _get_model_bytecode_version(oss); AT_ASSERT(backport_version == current_to_version); // Load and run the backport model, then compare the result with expect // result runAndCheckBytecodeModel( oss, input_data, expect_result_list, current_to_version); runAndCheckTorchScriptModel( oss, input_data, expect_result_list, current_to_version); current_to_version--; } // backport to minimum version - 1 should fail std::stringstream oss; bool backPortSuccess = _backport_for_mobile(test_model_file_stream, oss, minimum_to_version - 1); AT_ASSERT(!backPortSuccess); } } // namespace #if !defined FB_XPLAT_BUILD TEST(LiteInterpreterTest, BackPortByteCodeModelAllVersions) { torch::jit::Module module("m"); // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers) module.register_parameter("weight", torch::ones({20, 1, 5, 5}), false); // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers) module.register_parameter("bias", torch::ones({20}), false); module.define(R"( def forward(self, input): x1 = torch.zeros(2, 2) x2 = torch.empty_like(torch.empty(2, 2)) x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True) # Add torch.add operator to cover bytecode version bump from 6 to 7 # for bytecode version 7, the main change is to support defaults arguments with out arguments x = 2 * torch.ones(1) h = torch.ones(1) torch.add(x, h, out=x) return (x1, x2, x3, x) )"); torch::jit::Module module_freeze = freeze(module); std::stringstream input_model_stream; module_freeze._save_for_mobile(input_model_stream); std::vector input_data = std::vector({torch::ones({1, 1, 28, 28})}); std::vector expect_result_list; expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float) * 0); expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float)); expect_result_list.emplace_back( at::ones({1, 20, 24, 24}, ScalarType::Float) * 26); expect_result_list.emplace_back(3 * at::ones({1})); backportAllVersionCheck( input_model_stream, input_data, expect_result_list, caffe2::serialize::kProducedBytecodeVersion); } #endif // !defined(FB_XPLAT_BUILD) TEST(LiteInterpreterTest, GetRuntimeOpsAndInfo) { auto runtime_ops = _get_runtime_ops_and_info(); // Ballpark estimate of the minimal number of ops; just used to // verify API returns a reasonably large number. AT_ASSERT(runtime_ops.size() > 2900); } TEST(LiteInterpreterTest, isCompatibleSuccess) { // test trivial success case auto runtime_info = RuntimeCompatibilityInfo::get(); std::unordered_map model_ops; model_ops["aten::add.Scalar"] = OperatorInfo{2}; std::unordered_set types = {"List", "int", "NamedTuple"}; auto model_info = ModelCompatibilityInfo{ caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops, types}; AT_ASSERT( is_compatible(runtime_info, model_info).status == ModelCompatibilityStatus::OK); } TEST(LiteInterpreterTest, isCompatibleFail) { // test trivial failure due to ops std::unordered_map model_ops; model_ops["aten::add.Scalar"] = OperatorInfo{2}; auto model_info = ModelCompatibilityInfo{ caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops}; std::unordered_map runtime_ops; runtime_ops["aten::add.Int"] = OperatorInfo{2}; auto runtime_info = RuntimeCompatibilityInfo{ caffe2::serialize::kMaxSupportedBytecodeVersion, runtime_ops, _get_mobile_supported_types()}; auto result = is_compatible(runtime_info, model_info); AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR); AT_ASSERT( result.errors[0] == "Operator 'aten::add.Scalar' missing from runtime (not found)"); // test trivial failure due to bytecode runtime_ops["aten::add.Scalar"] = OperatorInfo{2}; runtime_info = RuntimeCompatibilityInfo{ caffe2::serialize::kMaxSupportedBytecodeVersion, runtime_ops, _get_mobile_supported_types()}; model_info.bytecode_version = caffe2::serialize::kMaxSupportedBytecodeVersion + 1; result = is_compatible(runtime_info, model_info); AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR); // test trivial failure due to type runtime_info = RuntimeCompatibilityInfo::get(); std::unordered_set types = {"List", "int", "Sequence"}; model_info = ModelCompatibilityInfo{ caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops, types}; AT_ASSERT( is_compatible(runtime_info, model_info).status == ModelCompatibilityStatus::ERROR); } TEST(LiteInterpreterTest, Eval) { std::vector inputs; Module m("m"); m.define(R"( def __init__(self, x): self.training = True def forward(self, input): return torch.dropout(input, 1.0, self.training) )"); // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace) inputs.push_back(torch::ones({1, 1, 28, 28})); m.eval(); auto outputref = m.forward(inputs).toTensor(); // save m in training mode to make sure that mobile eval() will correctly // change back to eval mode m.train(); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); bc.eval(); IValue res; for (int i = 0; i < 3; ++i) { res = bc.get_method("forward")(inputs); } auto output = res.toTensor(); AT_ASSERT(outputref.dim() == output.dim()); AT_ASSERT( outputref[0][0][0][0].item() == output[0][0][0][0].item()); } TEST(LiteInterpreterTest, FindWrongMethodName) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add(self, x): b = 4 return self.foo + x + b )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); ASSERT_TRUE(bc.find_method("forward") == c10::nullopt); } TEST(LiteInterpreterTest, FindAndRunMethod) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add_it(self, x): b = 4 return self.foo + x + b )"); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.get_method("add_it")(inputs); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { auto bcinputs = inputs; auto method = bc.find_method("add_it"); AT_ASSERT(method != c10::nullopt); res = (*method)(std::move(bcinputs)); } auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } TEST(LiteInterpreterTest, RunMethodVariadic) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add_three(self, x, y): return self.foo + x + y )"); std::vector inputs; auto inputx = 5 * torch::ones({}); auto inputy = 4 * torch::ones({}); auto ref = m.run_method("add_three", inputx, inputy); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res = bc.run_method("add_three", inputx, inputy); auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } TEST(LiteInterpreterTest, DuplicateSetState) { Module m("M"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def __getstate__(self): return self.foo + self.foo def __setstate__(self, a): self.foo = a def forward(self, x): b = 4 return self.foo + x + b )"); Module b("B"); b.register_module("M0", m); b.register_module("M1", m); b.define(R"( def forward(self, x): return self.M0.forward(x) + self.M1.forward(x) )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); const auto methods = bc.get_methods(); const size_t expected_n = 3; ASSERT_EQ(methods.size(), expected_n); } TEST(LiteInterpreterTest, ExtraFiles) { const auto script = R"JIT( def forward(self): x = torch.rand(5, 5) x = x.mm(x) return x )JIT"; auto module = std::make_shared("Module", std::make_shared()); module->define(script); std::ostringstream oss; std::unordered_map extra_files; extra_files["metadata.json"] = "abc"; extra_files["mobile_info.json"] = "{\"key\": 23}"; module->_save_for_mobile(oss, extra_files); std::istringstream iss(oss.str()); caffe2::serialize::IStreamAdapter adapter{&iss}; std::unordered_map loaded_extra_files; loaded_extra_files["metadata.json"] = ""; torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files); ASSERT_EQ(loaded_extra_files["metadata.json"], "abc"); loaded_extra_files.clear(); std::vector all_files = caffe2::serialize::PyTorchStreamReader(&iss).getAllRecords(); for (auto& file_name : all_files) { if (file_name.find("extra/") == 0) { loaded_extra_files[file_name.substr(6)] = ""; } } torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files); ASSERT_EQ(loaded_extra_files["metadata.json"], "abc"); ASSERT_EQ(loaded_extra_files["mobile_info.json"], "{\"key\": 23}"); } TEST(LiteInterpreterTest, OpNameExportFetchRootOperators) { torch::jit::Module m("m"); m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false); m.register_parameter("bias", torch::ones({20}), false); m.define(R"( def forward(self, input): x1 = torch.zeros(2, 2) x2 = torch.empty_like(torch.empty(2, 2)) x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True) return (x1, x2, x3) )"); m.eval(); std::stringstream ss; m._save_for_mobile(ss); torch::jit::mobile::Module ptl_model = torch::jit::_load_for_mobile(ss); std::set operator_names = torch::jit::mobile::_export_operator_list(ptl_model); std::set expected_operator_names = { "aten::_convolution", "aten::empty.memory_format", "aten::empty_like", "aten::zeros", }; EXPECT_EQ(operator_names, expected_operator_names) << "Expected the root operator lists to be the same"; } TEST(LiteInterpreterTest, DefaultArgsConv) { auto s = std::getenv("PYTORCH_TEST_WITH_TSAN"); if (s && strcmp(s, "1") == 0) return; std::vector inputs; Module m("m"); m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false); m.register_parameter("bias", torch::ones({20}), false); m.define(R"( def forward(self, input): return torch.conv2d(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], 1) )"); inputs.push_back(torch::ones({1, 1, 28, 28})); auto outputref = m.forward(inputs).toTensor(); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 1; ++i) { res = bc.get_method("forward")(inputs); } auto output = res.toTensor(); AT_ASSERT(outputref.dim() == output.dim()); AT_ASSERT(output.equal(outputref)); } TEST(RunTimeTest, ParseBytecode) { // A simple example to show a simple bytecode that can be used independent of // PyTorch TorchScript serialization (unpickler, etc) and operator library. // It has basic control flow (if, else) and basic data orchestration (list // construction). The original PyTorch program: // class Module(torch.nn.Module): // // def __init__(self): // super().__init__() // // def forward(self, x: int, h: int, xfirst: bool): // if xfirst: // return [x, h] // else: // return [h, x] // 1. Prepare for the bytecode. In reality it can be from a customized // deserializer. std::vector instructions{ to_tuple({"STOREN", 1, 4}), to_tuple({"DROPR", 1, 0}), to_tuple({"MOVE", 4, 0}), to_tuple({"JF", 5, 0}), to_tuple({"LOAD", 2, 0}), to_tuple({"LOAD", 3, 0}), to_tuple({"LIST_CONSTRUCT", 0, 2}), to_tuple({"JMP", 4, 0}), to_tuple({"LOAD", 3, 0}), to_tuple({"LOAD", 2, 0}), to_tuple({"LIST_CONSTRUCT", 1, 2}), to_tuple({"STORE", 5, 0}), to_tuple({"DROPR", 3, 0}), to_tuple({"DROPR", 2, 0}), to_tuple({"MOVE", 5, 0}), to_tuple({"RET", 0, 0}), }; std::vector operators; // empty for this example std::vector constants; // empty for this example std::vector types{"List[int]", "List[int]"}; // 2. Parse the function std::string function_name("test_function"); auto function = std::unique_ptr( new mobile::Function(c10::QualifiedName(function_name))); c10::ivalue::TupleElements debug_handles_m_tuple; parseInstructions( function_name, std::move(*c10::ivalue::Tuple::create(instructions)).elements(), debug_handles_m_tuple, function.get()); parseTypes(c10::ivalue::Tuple::create(types)->elements(), function.get()); const size_t rsize = 5; parseRegisterSize(rsize, function.get()); // 3. Prepare for inputs and run the function // Note that the first input is reserved for Module object. // Since this is a function test and Module object is not required, // a dummy IValue (0) is added here. std::vector inputs{0, 1, 2, true}; function->run(inputs); auto output = inputs[0].toList(); ASSERT_EQ(output[0], 1); ASSERT_EQ(output[1], 2); std::vector inputs1{0, 1, 2, false}; function->run(inputs1); auto output1 = inputs1[0].toList(); ASSERT_EQ(output1[0], 2); ASSERT_EQ(output1[1], 1); } TEST(RunTimeTest, ParseOperator) { // A simple example to show a simple bytecode that can be used independent of // PyTorch TorchScript serialization (unpickler, etc) and operator library. // It has one operator and we should be able to register it. The original // PyTorch program: // class Add(torch.nn.Module): // def __init__(self): // super(Add, self).__init__() // def forward(self, a, b): // return a + b // 1. Prepare for the bytecode. In reality it can be from a customized // deserializer. std::vector instructions{ to_tuple({"STOREN", 1, 3}), to_tuple({"DROPR", 1, 0}), to_tuple({"MOVE", 2, 0}), to_tuple({"MOVE", 3, 0}), to_tuple({"OP", 0, 0}), to_tuple({"RET", 0, 0}), }; std::vector operators{ to_tuple({"aten::add", "Tensor", 2}), }; std::vector constants{ to_tuple({1}), }; int64_t model_version = caffe2::serialize::kProducedBytecodeVersion; // 2. Parse the function std::string function_name("test_function"); auto function = std::unique_ptr( new mobile::Function(c10::QualifiedName(function_name))); c10::ivalue::TupleElements debug_handles_m_tuple; parseInstructions( function_name, std::move(*c10::ivalue::Tuple::create(instructions)).elements(), debug_handles_m_tuple, function.get()); parseOperators( std::move(*c10::ivalue::Tuple::create(operators)).elements(), model_version, 1, function.get()); const size_t rsize = 5; parseRegisterSize(rsize, function.get()); // 3. Prepare for inputs and run the function // Note that the first input is reserved for Module object. // Since this is a function test and Module object is not required, // a dummy IValue (0) is added here. std::vector inputs{0, at::tensor(1), at::tensor(2)}; function->run(inputs); auto output = inputs[0]; ASSERT_EQ(output, at::tensor(3)); } namespace { void testLiteModuleCompareResultTensors( Module& m, const std::vector& inputs, const std::string& method_name = "forward") { auto outputref = m.get_method(method_name)(inputs).toTensor(); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { res = bc.get_method(method_name)(inputs); } auto output = res.toTensor(); AT_ASSERT(outputref.dim() == output.dim()); AT_ASSERT(output.equal(outputref)); } void testDefaultArgsPinv(int num_args) { Module m("m"); if (num_args == 1) { m.define(R"( def forward(self, input): return torch.linalg_pinv(input) )"); } else if (num_args == 2) { m.define(R"( def forward(self, input): return torch.linalg_pinv(input, 1e-5) )"); } else if (num_args == 3) { m.define(R"( def forward(self, input): return torch.linalg_pinv(input, 1e-5, True) )"); } std::vector inputs; const int N = 28; auto input = torch::range(1, N * N, 1); input[0] = 1; // a more stable matrix input = input.view({N, N}); inputs.push_back(input); testLiteModuleCompareResultTensors(m, inputs); } } // namespace #if !defined FB_XPLAT_BUILD TEST(LiteInterpreterTest, DefaultArgsPinv) { // Test with different number of specified arguments. // Arguments not specified take default value. for (int num_args = 1; num_args <= 3; ++num_args) { testDefaultArgsPinv(num_args); } // bytecode with one specified argument: // (6, // ('__torch__.m.forward', // (('instructions', // (('STOREN', 1, 2), // ('DROPR', 1, 0), // ('MOVE', 2, 0), // ('OP', 0, 0), // ('RET', 0, 0))), // ('operators', (('aten::linalg_pinv', '', 1),)), // ('constants', (False, 1e-15)), # default constants are not // used // ('types', ()), // ('register_size', 2)), // (('arguments', // ((('name', 'self'), ('type', '__torch__.m'), ('default_value', // None)), // (('name', 'input'), ('type', 'Tensor'), ('default_value', // None)))), // ('returns', // ((('name', ''), ('type', 'Tensor'), ('default_value', // None)),))))) // bytecode with 2 specified argument: // (6, // ('__torch__.m.forward', // (('instructions', // (('STOREN', 1, 2), // ('DROPR', 1, 0), // ('MOVE', 2, 0), // ('LOADC', 1, 0), # added LOADC for specified argument // ('OP', 0, 0), // ('RET', 0, 0))), // ('operators', (('aten::linalg_pinv', '', 2),)), // ('constants', (False, 1e-05)), # updated constant table // ('types', ()), // ('register_size', 2)), // (('arguments', // ((('name', 'self'), ('type', '__torch__.m'), ('default_value', // None)), // (('name', 'input'), ('type', 'Tensor'), ('default_value', // None)))), // ('returns', // ((('name', ''), ('type', 'Tensor'), ('default_value', // None)),))))) // bytecode with 3 specified arguments: // (6, // ('__torch__.m.forward', // (('instructions', // (('STOREN', 1, 2), // ('DROPR', 1, 0), // ('MOVE', 2, 0), // ('LOADC', 1, 0), // ('LOADC', 0, 0), // ('OP', 0, 0), // ('RET', 0, 0))), // ('operators', (('aten::linalg_pinv', '', 3),)), // ('constants', (True, 1e-05)), // ('types', ()), // ('register_size', 2)), // (('arguments', // ((('name', 'self'), ('type', '__torch__.m'), ('default_value', // None)), // (('name', 'input'), ('type', 'Tensor'), ('default_value', // None)))), // ('returns', // ((('name', ''), ('type', 'Tensor'), ('default_value', // None)),))))) } TEST(LiteInterpreterTest, DefaultArgsTensorinvSpecifyDefault) { // The second argument is specified, but the value is the same as the default // value. It's treated as "not specified" since the value can be fetched from // schema. Module m("m"); m.define(R"( def forward(self, input): return torch.linalg_tensorinv(input, 2) )"); torch::jit::MobileCode code(m.get_method("forward").graph(), "forward"); auto arg_nums = code.op_to_num_specified_args(); ASSERT_EQ(arg_nums.size(), 1); ASSERT_EQ(arg_nums["aten::linalg_tensorinv"], 1); std::vector inputs; const int N = 4; auto input = torch::rand({N, N, N, N}); inputs.push_back(input); testLiteModuleCompareResultTensors(m, inputs); } void testDefaultArgsPinvWithOutArg(int num_args) { Module m("m"); if (num_args == 1) { m.define(R"( def forward(self, input): return torch.linalg_pinv(input, out=input) )"); } else if (num_args == 2) { m.define(R"( def forward(self, input): return torch.linalg_pinv(input, 1e-5, out=input) )"); } else if (num_args == 3) { m.define(R"( def forward(self, input): return torch.linalg_pinv(input, 1e-5, True, out=input) )"); } const int N = 28; auto input = torch::range(1, N * N, 1); input[0] = 10000; // a more stable matrix input = input.view({N, N}); auto ref = m.run_method("forward", input); TORCH_CHECK(!input.equal(torch::range(1, N * N, 1))); TORCH_CHECK(input.equal(ref.toTensor())); } TEST(LiteInterpreterTest, DefaultArgsPinvWithOutArg) { // Test with different number of specified arguments + out arg. // Arguments not specified take default value. for (int num_args = 1; num_args <= 3; ++num_args) { testDefaultArgsPinvWithOutArg(num_args); } } TEST(LiteInterpreterTest, DefaultArgsWithOutArg) { Module m("m"); m.define(R"( def forward(self, x, h): torch.add(x, h, out=x) )"); std::vector inputs; auto input_x = 2 * torch::ones({}); auto input_h = torch::ones({}); auto ref = m.run_method("forward", input_x, input_h); std::stringstream ss; m._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); bc.run_method("forward", input_x, input_h); AT_ASSERT(input_x.equal(4 * torch::ones({}))); auto ops = _get_model_ops_and_info(ss); auto op = ops.find("aten::add.out"); TORCH_CHECK( op != ops.end() && op->second.num_schema_args.has_value() && op->second.num_schema_args.value() == 3); } TEST(LiteInterpreterTest, TestExceptionStackWithTwoLevelModuleHierarchy) { Module a("A"); a.define(R"( def bar(self, x, y): return x + y )"); Module b("B"); b.register_module("A0", a); b.define(R"( def foo(self, x, y): return self.A0.bar(x, y) + 2 )"); Module c("C"); c.register_module("B0", b); c.define(R"( def forward(self, x, y): return self.B0.foo(x, y) + 3 )"); std::vector inputs; inputs.emplace_back(torch::rand({2, 4})); inputs.emplace_back(torch::rand({13, 9})); std::stringstream ss; c._save_for_mobile(ss, ExtraFilesMap(), true); auto lite_m = _load_for_mobile(ss); std::string error_pattern = R"( Module hierarchy:top(C)::.B0(B)::foo.A0(A)::bar.aten::add Traceback of TorchScript (most recent call last): File "", line 3, in def forward(self, x, y): return self.B0.foo(x, y) + 3 ~~~~~~~~~~~ <--- HERE File "", line 3, in foo def foo(self, x, y): return self.A0.bar(x, y) + 2 ~~~~~~~~~~~ <--- HERE File "", line 3, in bar def bar(self, x, y): return x + y ~~~~~ <--- HERE )"; ASSERT_THROWS_WITH_MESSAGE(lite_m.forward(inputs), error_pattern); } #endif // !defined(FB_XPLAT_BUILD) namespace { static auto reg = torch::class_( "_TorchScriptTesting", "_LiteInterpreterTest") .def(torch::init<>()) .def("get", &TorchBindLiteInterpreterTestStruct::get) .def_pickle( // __getattr__ [](const c10::intrusive_ptr& self) -> int64_t { return 0; }, // __setattr__ [](int64_t state) { return c10::make_intrusive(); }); } // namespace TEST(LiteInterpreterTest, OperatorCacheDifferentiatesDefaultArgs) { // Create 3 methods: // // 1. forward() returns a tensor with dtype=torch.int64 (4) // 2. forward2() returns a tensor with dtype=torch.float32 (6) // 3. forward3() returns a tensor with dtype=torch.float32 but // the dtype is inferred by the input tensor's dtype // // If caching works correctly, then the result from the full-jit // module and the lite module will be the same. Otherwise, it // will be different if we don't correctly ignore the cache // entry for an operator that has a different number of // arguments. Module m("m"); m.define(R"( def forward(self): ret1 = torch.new_empty(torch.zeros(10), [10], dtype=4) return ret1.fill_(25) )"); m.define(R"( def forward2(self): ret1 = torch.new_empty(torch.zeros(10), [10], dtype=6) return ret1.fill_(32.0) )"); m.define(R"( def forward3(self): ret1 = torch.new_empty(torch.zeros(10), [10]) return ret1.fill_(12.0) )"); std::vector inputs; testLiteModuleCompareResultTensors(m, inputs, "forward"); testLiteModuleCompareResultTensors(m, inputs, "forward2"); testLiteModuleCompareResultTensors(m, inputs, "forward3"); } TEST(RunTimeTest, RuntimeCall) { // def call(x): // return x + x // // def forward(a): // x = a + call(a) // y = a + call(x) // return y std::vector instructionsCall{ to_tuple({"STORE", 1, 0}), to_tuple({"LOAD", 1, 0}), to_tuple({"MOVE", 1, 0}), to_tuple({"LOADC", 0, 0}), to_tuple({"OP", 0, 0}), to_tuple({"RET", 0, 0}), }; std::vector instructionsFoo{ to_tuple({"STORE", 1, 0}), to_tuple({"LOAD", 1, 0}), to_tuple({"LOAD", 1, 0}), to_tuple({"MOVE", 1, 0}), to_tuple({"CALL", 0, 0}), to_tuple({"LOADC", 0, 0}), to_tuple({"OP", 0, 0}), to_tuple({"CALL", 0, 0}), to_tuple({"LOADC", 0, 0}), to_tuple({"OP", 0, 0}), to_tuple({"RET", 0, 0}), }; std::vector operatorsFoo{ to_tuple({"aten::add", "Tensor", 3}), }; std::vector constantsFoo{ 1, }; std::vector operatorsCall{ to_tuple({"aten::add", "Tensor", 3}), }; std::vector constantsCall{ 1, }; int64_t model_version = caffe2::serialize::kProducedBytecodeVersion; auto foo = std::make_unique(c10::QualifiedName("foo")); c10::ivalue::TupleElements debug_handles_m_tuple; parseInstructions( "foo", std::move(*c10::ivalue::Tuple::create(instructionsFoo)).elements(), debug_handles_m_tuple, foo.get()); parseOperators( std::move(*c10::ivalue::Tuple::create(operatorsFoo)).elements(), model_version, 1, foo.get()); parseConstants( std::move(*c10::ivalue::Tuple::create(constantsFoo)).elements(), foo.get()); const size_t rsize = 5; parseRegisterSize(rsize, foo.get()); auto call = std::make_unique(c10::QualifiedName("call")); parseInstructions( "call", std::move(*c10::ivalue::Tuple::create(instructionsCall)).elements(), debug_handles_m_tuple, call.get()); parseOperators( std::move(*c10::ivalue::Tuple::create(operatorsCall)).elements(), model_version, 1, call.get()); parseConstants( std::move(*c10::ivalue::Tuple::create(constantsCall)).elements(), call.get()); parseRegisterSize(rsize, call.get()); foo->append_function(*call); std::vector inputs{at::tensor(1)}; foo->run(inputs); auto output = inputs[0]; ASSERT_EQ(output, at::tensor(7)); } } // namespace jit } // namespace torch