#pragma once #include "caffe2/core/context.h" #include "caffe2/core/init.h" #include "caffe2/core/logging.h" #include "caffe2/core/net.h" #include "caffe2/core/operator.h" #include "caffe2/core/scope_guard.h" #include "caffe2/core/types.h" #include "caffe2/core/workspace.h" #include "caffe2/proto/caffe2.pb.h" #include #include #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION #define PY_ARRAY_UNIQUE_SYMBOL caffe2_python_ARRAY_API #include namespace caffe2 { // Add methods common to both CPU and GPU mode. void addGlobalMethods(pybind11::module& m); // Expose Workspace, Net, Blob void addObjectMethods(pybind11::module& m); class BlobFetcherBase { public: virtual ~BlobFetcherBase(); virtual pybind11::object Fetch(const Blob& blob) = 0; }; class BlobFeederBase { public: virtual ~BlobFeederBase(); virtual void Feed(const DeviceOption& option, PyArrayObject* array, Blob* blob) = 0; }; CAFFE_DECLARE_TYPED_REGISTRY(BlobFetcherRegistry, CaffeTypeId, BlobFetcherBase); #define REGISTER_BLOB_FETCHER(id, ...) \ CAFFE_REGISTER_TYPED_CLASS(BlobFetcherRegistry, id, __VA_ARGS__) inline unique_ptr CreateFetcher(CaffeTypeId id) { return BlobFetcherRegistry()->Create(id); } CAFFE_DECLARE_TYPED_REGISTRY(BlobFeederRegistry, int, BlobFeederBase); #define REGISTER_BLOB_FEEDER(device_type, ...) \ CAFFE_REGISTER_TYPED_CLASS(BlobFeederRegistry, device_type, __VA_ARGS__) inline unique_ptr CreateFeeder(int device_type) { return BlobFeederRegistry()->Create(device_type); } static_assert( sizeof(int) == sizeof(int32_t), "We make an assumption that int is always int32 for numpy " "type mapping."); int CaffeToNumpyType(const TypeMeta& meta); const TypeMeta& NumpyTypeToCaffe(int numpy_type); template class TensorFetcher : public BlobFetcherBase { public: pybind11::object Fetch(const Blob& blob) override { const Tensor& tensor = blob.Get>(); Context context; CHECK_GE(tensor.size(), 0); std::vector npy_dims; for (const auto dim : tensor.dims()) { npy_dims.push_back(dim); } int numpy_type = CaffeToNumpyType(tensor.meta()); CAFFE_ENFORCE( numpy_type != -1, "This tensor's data type is not supported: ", tensor.meta().name(), "."); PyObject* array = PyArray_SimpleNew(tensor.ndim(), npy_dims.data(), numpy_type); void* outPtr = static_cast( PyArray_DATA(reinterpret_cast(array))); if (numpy_type == NPY_OBJECT) { PyObject** outObj = reinterpret_cast(outPtr); auto* str = tensor.template data(); for (int i = 0; i < tensor.size(); ++i) { outObj[i] = PyBytes_FromStringAndSize(str->data(), str->size()); str++; // cleanup on failure if (outObj[i] == nullptr) { for (int j = 0; j < i; ++j) { Py_DECREF(outObj[j]); } Py_DECREF(array); CAFFE_THROW("Failed to allocate string for ndarray of strings."); } } // TODO - is this refcounted correctly? return pybind11::object(array, /* borrowed= */ false); } // Now, copy the data to the tensor. // TODO(Yangqing): Right now, to make things consistent between CPU and // GPU, we always do a data copy. This is not necessary for CPU and // read-only cases, so we may want to make it a non-copy. context.template CopyBytes( tensor.nbytes(), tensor.raw_data(), outPtr); context.FinishDeviceComputation(); return pybind11::object(array, /* borrowed= */ false); } }; template class TensorFeeder : public BlobFeederBase { public: virtual void Feed(const DeviceOption& option, PyArrayObject* original_array, Blob* blob) { PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array); auto g = MakeGuard([&]() { Py_XDECREF(array); }); const auto npy_type = PyArray_TYPE(array); const TypeMeta& meta = NumpyTypeToCaffe(npy_type); CAFFE_ENFORCE( meta.id() != 0, "This numpy data type is not supported: ", PyArray_TYPE(array), "."); Context context(option); context.SwitchToDevice(); Tensor* tensor = blob->GetMutable>(); // numpy requires long int as its dims. int ndim = PyArray_NDIM(array); npy_intp* npy_dims = PyArray_DIMS(array); std::vector dims; for (int i = 0; i < ndim; ++i) { dims.push_back(npy_dims[i]); } tensor->Resize(dims); // Now, copy the data to the tensor. switch (npy_type) { case NPY_OBJECT: { PyObject** input = reinterpret_cast(PyArray_DATA(array)); auto* outPtr = tensor->template mutable_data(); for (int i = 0; i < tensor->size(); ++i) { char* str; Py_ssize_t strSize; CAFFE_ENFORCE( PyBytes_AsStringAndSize(input[i], &str, &strSize) != -1, "Unsupported python object type passed into ndarray."); outPtr[i] = std::string(str, strSize); } } break; default: context.template CopyBytes( tensor->size() * meta.itemsize(), static_cast(PyArray_DATA(array)), tensor->raw_mutable_data(meta)); } context.FinishDeviceComputation(); } }; }