#include #include "tensor_new.h" #include #include "torch/csrc/DynamicTypes.h" #include "torch/csrc/Exceptions.h" #include "torch/csrc/Size.h" #include "torch/csrc/autograd/variable.h" #include "torch/csrc/utils/auto_gil.h" #include "torch/csrc/utils/auto_gpu.h" #include "torch/csrc/utils/cuda_lazy_init.h" #include "torch/csrc/utils/numpy_stub.h" #include "torch/csrc/utils/python_arg_parser.h" #include "torch/csrc/utils/python_numbers.h" #include "torch/csrc/utils/python_scalars.h" #include "torch/csrc/utils/python_strings.h" #include "torch/csrc/utils/tensor_numpy.h" static const int MAX_DIMS = 128; using namespace at; namespace torch { namespace utils { static void maybe_initialize_cuda(const at::Type &type) { if (type.is_cuda()) { torch::utils::cuda_lazy_init(); } } static Tensor dispatch_zeros(const Type& type, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.zeros(sizes); } static Tensor dispatch_ones(const Type& type, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.ones(sizes); } static Tensor dispatch_full(const Type& type, Scalar fill_value, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.full(sizes, fill_value); } static Tensor new_with_sizes(const Type& type, int device, IntList sizes) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); return type.tensor(sizes); } static Tensor new_with_storage(const Type& type, Storage& storage) { auto tensor = type.tensor(); tensor.set_(storage); return tensor; } static Tensor new_with_tensor(const Type& type, Tensor other) { if (other.type() != type) { throw TypeError("expected %s (got %s)", type.toString(), other.type().toString()); } return other.slice(); } static Tensor new_with_tensor_copy(const Type& type, Tensor other) { maybe_initialize_cuda(type); return type.copy(other); } static std::vector compute_sizes(PyObject* seq) { std::vector sizes; THPObjectPtr handle; while (PySequence_Check(seq)) { auto length = PySequence_Length(seq); if (length < 0) throw python_error(); sizes.push_back(length); if (sizes.size() > MAX_DIMS) { throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name); } if (length == 0) break; handle = THPObjectPtr(PySequence_GetItem(seq, 0)); seq = handle.get(); } return sizes; } static void recursive_store(char* data, IntList sizes, IntList strides, int64_t dim, ScalarType scalarType, int elementSize, PyObject* obj) { int64_t ndim = sizes.size(); if (dim == ndim) { torch::utils::store_scalar(data, scalarType, obj); return; } auto n = sizes[dim]; auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence")); if (!seq) throw python_error(); auto seq_size = PySequence_Fast_GET_SIZE(seq.get()); if (seq_size != n) { throw ValueError("expected sequence of length %lld at dim %lld (got %lld)", (long long)n, (long long)dim, (long long)seq_size); } PyObject** items = PySequence_Fast_ITEMS(seq.get()); for (int64_t i = 0; i < n; i++) { recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]); data += strides[dim] * elementSize; } } static Tensor new_from_data(ScalarType scalarType, PyObject* data) { if (THPUtils_checkString(data)) { throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name); } #ifdef WITH_NUMPY if (PyArray_Check(data)) { return autograd::make_variable(tensor_from_numpy(data), /*requires_grad=*/false); } #endif auto sizes = compute_sizes(data); auto tensor = autograd::make_variable(CPU(scalarType).tensor(sizes), /*requires_grad=*/false); recursive_store( (char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0, scalarType, tensor.type().elementSizeInBytes(), data); return tensor; } Tensor new_from_data(const Type & type, int device, PyObject *data) { auto tensor = new_from_data(type.scalarType(), data); if (tensor.type() != type) { maybe_initialize_cuda(type); AutoNoGIL no_gil; AutoGPU auto_gpu(device); tensor = tensor.toType(type); } return tensor; } static Tensor new_from_sequence(const Type & type, int device, PyObject* data) { if (!PySequence_Check(data)) { throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name); } return new_from_data(type, device, data); } static void check_is_dense(const Type& type) { if (type.is_sparse()) { std::ostringstream oss; oss << "new(..) on a dense tensor can only be called with a dense dtype, got: "; oss << torch::getDtype(type)->name; throw TypeError(oss.str().c_str()); } } static void check_is_sparse(const Type& type) { if (!type.is_sparse()) { std::ostringstream oss; oss << "new(..) on a spase tensor can only be called with a sparse dtype, got: "; oss << torch::getDtype(type)->name; throw TypeError(oss.str().c_str()); } } static Tensor legacy_sparse_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, int64_t? device=-1)", "new(IntList size, *, int64_t? device=-1)", "new(*, int64_t cdata)|hidden", "new(Tensor indices, Tensor values, *, int64_t? device=-1)", "new(Tensor indices, Tensor values, IntList size, *, int64_t? device=-1)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { AutoGPU auto_gpu(r.toInt64(0)); return type.tensor(); } else if (r.idx == 1) { PyObject* arg = r.pyobject(0); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return new_from_sequence(type, r.toInt64(1), r.pyobject(0)); } return new_with_sizes(type, r.toInt64(1), r.intlist(0)); } else if (r.idx == 2) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 3) { AutoGPU auto_gpu(r.toInt64(2)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1)); } else if (r.idx == 4) { AutoGPU auto_gpu(r.toInt64(3)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); } throw std::runtime_error("new(): invalid arguments"); } Tensor legacy_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, int64_t? device=-1)", "new(IntList size, *, int64_t? device=-1)", "new(Storage storage)", "new(*, int64_t cdata)|hidden", "new(Tensor other)", "new(PyObject* data, *, int64_t? device=-1)", }); if (type.is_sparse()) { return legacy_sparse_tensor_ctor(type, args, kwargs); } ParsedArgs<2> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { AutoGPU auto_gpu(r.toInt64(0)); return type.tensor(); } else if (r.idx == 1) { PyObject* arg = r.pyobject(0); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return new_from_sequence(type, r.toInt64(1), r.pyobject(0)); } return new_with_sizes(type, r.toInt64(1), r.intlist(0)); } else if (r.idx == 2) { return new_with_storage(type, *r.storage(0)); } else if (r.idx == 3) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 4) { return new_with_tensor(type, r.tensor(0)); } else if (r.idx == 5) { return new_from_sequence(type, r.toInt64(1), r.pyobject(0)); } throw std::runtime_error("new(): invalid arguments"); } static Tensor legacy_sparse_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, Type dtype=None, int64_t? device=-1)", "new(IntList size, *, Type dtype=None, int64_t? device=-1)", "new(*, int64_t cdata)|hidden", "new(Tensor indices, Tensor values, *, int64_t? device=-1)", "new(Tensor indices, Tensor values, IntList size, *, int64_t? device=-1)", }); ParsedArgs<5> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = r.typeWithDefault(0, type); check_is_sparse(actual_type); maybe_initialize_cuda(actual_type); AutoGPU auto_gpu(r.toInt64(1)); return actual_type.tensor(); } else if (r.idx == 1) { PyObject* arg = r.pyobject(0); const auto& actual_type = r.typeWithDefault(1, type); check_is_sparse(actual_type); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return new_from_sequence(actual_type, r.toInt64(2), r.pyobject(0)); } return new_with_sizes(actual_type, r.toInt64(2), r.intlist(0)); } else if (r.idx == 2) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 3) { // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't // have a device (we should infer it). AutoGPU auto_gpu(r.toInt64(2)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1)); } else if (r.idx == 4) { // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't // have a device (we should infer it). AutoGPU auto_gpu(r.toInt64(3)); return type.sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); } throw std::runtime_error("new(): invalid arguments"); } Tensor legacy_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new(*, Type dtype=None, int64_t? device=-1)", "new(IntList size, *, Type dtype=None, int64_t? device=-1)", "new(Storage storage)", "new(*, int64_t cdata)|hidden", "new(Tensor other)", // this doesn't have a dtype/device because it creates an alias. "new(PyObject* data, *, Type dtype=None, int64_t? device=-1)", }); if (type.is_sparse()) { return legacy_sparse_tensor_new(type, args, kwargs); } ParsedArgs<3> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = r.typeWithDefault(0, type); check_is_dense(actual_type); maybe_initialize_cuda(actual_type); AutoGPU auto_gpu(r.toInt64(1)); return actual_type.tensor(); } else if (r.idx == 1) { PyObject* arg = r.pyobject(0); const auto& actual_type = r.typeWithDefault(1, type); check_is_dense(actual_type); if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) { // new(sequence) binds to this signature but should be treated differently // unless the sequences is a torch.Size return new_from_sequence(actual_type, r.toInt64(2), r.pyobject(0)); } return new_with_sizes(actual_type, r.toInt64(2), r.intlist(0)); } else if (r.idx == 2) { return new_with_storage(type, *r.storage(0)); } else if (r.idx == 3) { auto cdata = reinterpret_cast(r.toInt64(0)); return type.unsafeTensorFromTH(cdata, true); } else if (r.idx == 4) { return new_with_tensor(type, r.tensor(0)); } else if (r.idx == 5) { const auto& actual_type = r.typeWithDefault(1, type); check_is_dense(actual_type); return new_from_sequence(actual_type, r.toInt64(2), r.pyobject(0)); } throw std::runtime_error("new(): invalid arguments"); } static Tensor set_requires_grad(Tensor self, bool requires_grad) { static_cast(self).set_requires_grad(requires_grad); return self; } Tensor new_tensor(const Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_tensor(Tensor other, *, Type dtype=None, bool requires_grad=False)", "new_tensor(PyObject* data, *, Type dtype=None, int64_t? device=-1, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { return set_requires_grad(new_with_tensor_copy(r.typeWithDefault(1, type), r.tensor(0)), r.toBool(2)); } else if (r.idx == 1) { return set_requires_grad(new_from_data(r.typeWithDefault(1, type), r.toInt64(2), r.pyobject(0)), r.toBool(3)); } throw std::runtime_error("new_tensor(): invalid arguments"); } Tensor new_empty(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_empty(IntList size, *, Type dtype=None, int64_t? device=-1, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = r.typeWithDefault(1, type); return set_requires_grad(new_with_sizes(actual_type, r.toInt64(2), r.intlist(0)), r.toBool(3)); } throw std::runtime_error("new_empty(): invalid arguments"); } Tensor new_full(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_full(IntList size, Scalar fill_value, *, Type dtype=None, int64_t? device=-1, bool requires_grad=False)", }); ParsedArgs<5> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = r.typeWithDefault(2, type); return set_requires_grad(dispatch_full(actual_type, r.scalar(1), r.toInt64(3), r.intlist(0)), r.toBool(4)); } throw std::runtime_error("new_full(): invalid arguments"); } Tensor new_ones(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_ones(IntList size, *, Type dtype=None, int64_t? device=-1, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = r.typeWithDefault(1, type); return set_requires_grad(dispatch_ones(actual_type, r.toInt64(2), r.intlist(0)), r.toBool(3)); } throw std::runtime_error("new_ones(): invalid arguments"); } Tensor new_zeros(const at::Type& type, PyObject* args, PyObject* kwargs) { static PythonArgParser parser({ "new_zeros(IntList size, *, Type dtype=None, int64_t? device=-1, bool requires_grad=False)", }); ParsedArgs<4> parsed_args; auto r = parser.parse(args, kwargs, parsed_args); if (r.idx == 0) { const auto& actual_type = r.typeWithDefault(1, type); return set_requires_grad(dispatch_zeros(actual_type, r.toInt64(2), r.intlist(0)), r.toBool(3)); } throw std::runtime_error("new_zeros(): invalid arguments"); } }} // namespace torch::utils