## @package functional # Module caffe2.python.layers.functional from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, schema, scope, workspace from caffe2.python.layers.layers import ( ModelLayer, ) import caffe2.proto.caffe2_pb2 as caffe2_pb2 import numpy as np import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class Functional(ModelLayer): def __init__(self, model, input_record, output_names_or_num, function, name='functional', output_dtypes=None, **kwargs): # allow coercion input_record = schema.as_record(input_record) super(Functional, self).__init__(model, name, input_record, **kwargs) self._function = function with scope.NameScope(self.name): if isinstance(output_names_or_num, int): self.output_schema = schema.NewRecord( model.net, schema.RawTuple(output_names_or_num)) else: if not isinstance(output_names_or_num, list): output_names_or_num = [output_names_or_num] out_tuple = [(out, np.void) for out in output_names_or_num] self.output_schema = schema.NewRecord( model.net, schema.Struct(*out_tuple)) num_outputs = len(self.output_schema.field_blobs()) # If output_dtypes is provided, use it for output schema. Otherwise # the shape and type will be inferred. if output_dtypes is not None: if not isinstance(output_dtypes, list): output_dtypes = [output_dtypes] * num_outputs assert len(output_dtypes) == num_outputs for dtype, scalar in zip(output_dtypes, self.output_schema.all_scalars()): scalar.set_type(dtype) return # Fake execution of the function to infer shapes and types automatically had_issues = False try: type_net = core.Net('_temp_type_and_shape_inference_net') schema.InitEmptyRecord(type_net, input_record, enforce_types=True) function(type_net, self.input_record, self.output_schema) (shapes, types) = workspace.InferShapesAndTypes([type_net], {}) for i in range(num_outputs): blob = self.output_schema[i]() if blob not in types or blob not in shapes: had_issues = True continue if shapes[blob] == []: # Scalar type shape = tuple() elif shapes[blob][0] == 0: shape = tuple(shapes[blob][1:]) else: logger.warning("unexpeced shape: {}".format(shapes[blob])) # If batch dimension is not first - give up on shape # inference for that blob had_issues = True continue # TODO(amalevich): Move it to some shared library dtype = None if types[blob] == caffe2_pb2.TensorProto.DOUBLE: dtype = (np.float64, shape) elif types[blob] == caffe2_pb2.TensorProto.FLOAT: dtype = (np.float32, shape) elif types[blob] == caffe2_pb2.TensorProto.INT32: dtype = (np.int32, shape) elif types[blob] == caffe2_pb2.TensorProto.INT64: dtype = (np.int64, shape) if dtype is not None: self.output_schema[i].set_type(dtype) except TypeError as ex: had_issues = True logger.warning(str(ex)) if had_issues: logger.warning( "Type inference had problems for layer: {}".format(self.name)) def add_ops(self, net): self._function(net, self.input_record, self.output_schema)