#include "pybind_state.h" #include #include #include "caffe2/core/asan.h" #include "caffe2/core/db.h" #include "caffe2/core/operator.h" #include "caffe2/core/predictor.h" #include "caffe2/utils/mkl_utils.h" #include "caffe2/utils/string_utils.h" #include "google/protobuf/io/coded_stream.h" #include "google/protobuf/io/zero_copy_stream_impl_lite.h" namespace caffe2 { namespace python { namespace py = pybind11; // gWorkspaces allows us to define and switch between multiple workspaces in // Python. static std::map> gWorkspaces; // gWorkspace is the pointer to the current workspace. The ownership is kept // by the gWorkspaces map. static Workspace* gWorkspace = nullptr; static std::string gCurrentWorkspaceName; BlobFetcherBase::~BlobFetcherBase() {} BlobFeederBase::~BlobFeederBase() {} CAFFE_DEFINE_TYPED_REGISTRY(BlobFetcherRegistry, CaffeTypeId, BlobFetcherBase); CAFFE_DEFINE_TYPED_REGISTRY(BlobFeederRegistry, int, BlobFeederBase); REGISTER_BLOB_FETCHER((TypeMeta::Id()), TensorFetcher); REGISTER_BLOB_FEEDER(CPU, TensorFeeder); class StringFetcher : public BlobFetcherBase { public: py::object Fetch(const Blob& blob) override { return py::str(blob.Get()); } }; REGISTER_BLOB_FETCHER((TypeMeta::Id()), StringFetcher); static_assert( sizeof(int) == sizeof(int32_t), "We make an assumption that int is always int32 for numpy " "type mapping."); int CaffeToNumpyType(const TypeMeta& meta) { static std::map numpy_type_map{ {TypeMeta::Id(), NPY_BOOL}, {TypeMeta::Id(), NPY_DOUBLE}, {TypeMeta::Id(), NPY_FLOAT}, {TypeMeta::Id(), NPY_FLOAT16}, {TypeMeta::Id(), NPY_INT}, {TypeMeta::Id(), NPY_INT8}, {TypeMeta::Id(), NPY_INT16}, {TypeMeta::Id(), NPY_LONGLONG}, {TypeMeta::Id(), NPY_UINT8}, {TypeMeta::Id(), NPY_UINT16}, {TypeMeta::Id(), NPY_OBJECT}, // Note: Add more types here. }; const auto it = numpy_type_map.find(meta.id()); return it == numpy_type_map.end() ? -1 : it->second; } const TypeMeta& NumpyTypeToCaffe(int numpy_type) { static std::map caffe_type_map{ {NPY_BOOL, TypeMeta::Make()}, {NPY_DOUBLE, TypeMeta::Make()}, {NPY_FLOAT, TypeMeta::Make()}, {NPY_FLOAT16, TypeMeta::Make()}, {NPY_INT, TypeMeta::Make()}, {NPY_INT8, TypeMeta::Make()}, {NPY_INT16, TypeMeta::Make()}, {NPY_INT64, TypeMeta::Make()}, {NPY_LONG, sizeof(long) == sizeof(int) ? TypeMeta::Make() : TypeMeta::Make()}, {NPY_LONGLONG, TypeMeta::Make()}, {NPY_UINT8, TypeMeta::Make()}, {NPY_UINT16, TypeMeta::Make()}, {NPY_OBJECT, TypeMeta::Make()}, // Note: Add more types here. }; static TypeMeta unknown_type; const auto it = caffe_type_map.find(numpy_type); return it == caffe_type_map.end() ? unknown_type : it->second; } template std::function DefinitionGetter( const Registry* registry) { return [registry](const string& name) { return registry->HelpMessage(name); }; } void switchWorkspaceInternal(const std::string& name, bool create_if_missing) { if (gWorkspaces.count(name)) { gCurrentWorkspaceName = name; gWorkspace = gWorkspaces[name].get(); return; } CAFFE_ENFORCE(create_if_missing); std::unique_ptr new_workspace(new Workspace()); gWorkspace = new_workspace.get(); gWorkspaces.insert(std::make_pair(name, std::move(new_workspace))); gCurrentWorkspaceName = name; } namespace python_detail { // Python Op implementations. struct Func { py::object py_func; bool needs_workspace; }; using FuncRegistery = std::unordered_map; FuncRegistery& gRegistery() { // Always leak the objects registered here. static FuncRegistery* r = new FuncRegistery(); return *r; } const Func& getOpFunc(const std::string& token) { CAFFE_ENFORCE( gRegistery().count(token), "Python operator for ", token, " is not available. If you use distributed training it probably means " "that python implementation has to be registered in each of the workers"); return gRegistery()[token]; } const Func& getGradientFunc(const std::string& token) { return getOpFunc(token + "_gradient"); } py::object fetchBlob(Workspace* ws, const std::string& name) { CAFFE_ENFORCE(ws->HasBlob(name), "Can't find blob: ", name); const caffe2::Blob& blob = *(ws->GetBlob(name)); auto fetcher = CreateFetcher(blob.meta().id()); if (fetcher) { return fetcher->Fetch(blob); } else { // If there is no fetcher registered, return a metainfo string. // If all branches failed, we will return a metainfo string. std::stringstream ss; ss << caffe2::string(name) << ", a C++ native class of type " << blob.TypeName() << "."; return py::str(ss.str()); } } } bool PythonOpBase::RunOnDevice() { std::vector inputs; inputs.reserve(InputSize()); for (auto i = 0; i < InputSize(); ++i) { inputs.push_back(const_cast(&Input(i))); } std::vector outputs; outputs.reserve(OutputSize()); for (auto i = 0; i < OutputSize(); ++i) { outputs.push_back(Output(i)); } auto& pyFunc = getFunc(); { // Acquire GIL for call to Python runtime. py::gil_scoped_acquire g; try { if (pyFunc.needs_workspace) { pyFunc.py_func(inputs, outputs, ws_); } else { pyFunc.py_func(inputs, outputs); } } catch (const py::error_already_set& e) { LOG(ERROR) << "Exception encountered running PythonOp function: " << e.what() << "\nTraceback: "; PyObject *type = nullptr, *value = nullptr, *trace = nullptr; PyErr_Fetch(&type, &value, &trace); PyTracebackObject* traceback = reinterpret_cast(trace); vector trace_vec; while (traceback) { trace_vec.push_back(traceback); traceback = traceback->tb_next; } for (int i = trace_vec.size() - 1; i >= 0; --i) { int line = trace_vec[i]->tb_lineno; const char* filename = PyString_AsString(trace_vec[i]->tb_frame->f_code->co_filename); const char* funcname = PyString_AsString(trace_vec[i]->tb_frame->f_code->co_name); LOG(ERROR) << " # " << trace_vec.size() - i - 1 << " " << filename << " (" << line << "): " << funcname; } Py_XDECREF(type); Py_XDECREF(value); Py_XDECREF(trace); return false; } } return true; } const python_detail::Func& PythonOp::getFunc() { const std::string& token = OperatorBase::GetSingleArgument("token", ""); return python_detail::getOpFunc(token); } const python_detail::Func& PythonGradientOp::getFunc() { const std::string& token = OperatorBase::GetSingleArgument("token", ""); return python_detail::getGradientFunc(token); } struct GetPythonGradient : public GradientMakerBase { using GradientMakerBase::GradientMakerBase; std::vector GetGradientDefs() override { std::vector gradientInputs; for (int i = 0; i < def_.input_size(); ++i) { gradientInputs.push_back(I(i)); } for (int i = 0; i < def_.output_size(); ++i) { gradientInputs.push_back(O(i)); } for (int i = 0; i < def_.output_size(); ++i) { gradientInputs.push_back(GO(i)); } std::vector gradientOutputs; for (int i = 0; i < def_.input_size(); ++i) { gradientOutputs.push_back(GI(i)); } return SingleGradientDef( "PythonGradient", "", gradientInputs, gradientOutputs); } }; REGISTER_CPU_OPERATOR(Python, PythonOp); REGISTER_CPU_OPERATOR(PythonGradient, PythonGradientOp); // Always allow running in-place OPERATOR_SCHEMA(Python).AllowInplace([](int, int) { return true; }); OPERATOR_SCHEMA(PythonGradient).AllowInplace([](int, int) { return true; }); REGISTER_GRADIENT(Python, GetPythonGradient); static bool ParseProtobufFromLargeString(const string& str, Message* proto) { ::google::protobuf::io::ArrayInputStream input_stream(str.data(), str.size()); ::google::protobuf::io::CodedInputStream coded_stream(&input_stream); // Set PlanDef message size limit to 1G. coded_stream.SetTotalBytesLimit(1024LL << 20, 512LL << 20); return proto->ParseFromCodedStream(&coded_stream); } void addObjectMethods(py::module& m) { py::class_(m, "Net").def("run", [](NetBase* net) { py::gil_scoped_release g; CAFFE_ENFORCE(net->Run()); }); py::class_(m, "Blob") .def( "serialize", [](const Blob& blob, const std::string& name) -> py::bytes { return blob.Serialize(name); }) .def( "deserialize", [](Blob* blob, py::bytes serialized) { blob->Deserialize(serialized); }) .def( "fetch", [](const Blob& blob) { auto fetcher = CreateFetcher(blob.meta().id()); CAFFE_ENFORCE( fetcher, "Could not fetch for blob of type: ", blob.meta().name()); return fetcher->Fetch(blob); }) .def( "tensor", [](Blob* blob) { auto t = blob->GetMutable(); return py::cast(t, py::return_value_policy::reference_internal); }) .def( "_feed", [](Blob* blob, const py::object& arg, const py::object device_option) { DeviceOption option; if (device_option != py::none()) { // If we have a device option passed in, read it. CAFFE_ENFORCE(ParseProtobufFromLargeString( py::bytes(device_option).cast(), &option)); } if (PyArray_Check(arg.ptr())) { // numpy array PyArrayObject* array = reinterpret_cast(arg.ptr()); auto feeder = CreateFeeder(option.device_type()); CAFFE_ENFORCE( feeder, "Unknown device type encountered in FeedBlob."); feeder->Feed(option, array, blob); return true; } if (PyString_Check(arg.ptr())) { // string *blob->GetMutable() = arg.cast(); return true; } CAFFE_THROW( "Unexpected type of argument - only numpy array or string are " "supported for feeding"); }, "Feed an input array or string, with the (optional) DeviceOption", py::arg("arg"), py::arg("device_option") = py::none()); py::class_(m, "TensorCPU") .def_property_readonly( "data", [](TensorCPU* t) -> py::object { if (t->meta() == TypeMeta{}) { // keep this behavior for backward compatibility t->mutable_data(); } auto res = TensorFetcher().FetchTensor(*t, false); return res.obj; }, "Return numpy array pointing to this tensor's data if possible. " "Otherwise (e.g. for strings) copies the data (same as fetch).") .def( "feed", [](TensorCPU* t, py::object obj) { if (!PyArray_Check(obj.ptr())) { CAFFE_THROW( "Unexpected type of argument -- expected numpy array"); } TensorFeeder().FeedTensor( DeviceOption{}, reinterpret_cast(obj.ptr()), t); }, "Copy data from given numpy array into this tensor.") .def( "fetch", [](TensorCPU* t) { auto res = TensorFetcher().FetchTensor(*t, true); return res.obj; }, "Copy data from this tensor into a new numpy array.") .def( "init", [](TensorCPU* t, std::vector dims, int caffe_type) { const auto& meta = DataTypeToTypeMeta((TensorProto::DataType)caffe_type); CAFFE_ENFORCE( !TensorFetcher().NeedsCopy(meta), "Cannot init tensor of this type. Use `feed` instead."); t->Resize(dims); t->raw_mutable_data(meta); }, "Initialize this tensor to given shape and data type. " "Fail if the given data type cannot be accessed from python.") .def_property_readonly( "_shape", [](const TensorCPU& t) { return t.dims(); }) .def("_reshape", [](TensorCPU* t, std::vector dims) { t->Resize(dims); }); py::class_(m, "Workspace") .def(py::init<>()) .def(py::init()) .def_property_readonly( "nets", [](Workspace* self) { CHECK_NOTNULL(self); std::map nets; for (const auto& name : self->Nets()) { LOG(INFO) << "name: " << name; nets[name] = py::cast( self->GetNet(name), py::return_value_policy::reference_internal); } return nets; }) .def_property_readonly( "blobs", [](Workspace* self) { CHECK_NOTNULL(self); std::map blobs; for (const auto& name : self->Blobs()) { blobs[name] = py::cast( self->GetBlob(name), py::return_value_policy::reference_internal); } return blobs; }) .def( "_create_net", [](Workspace* self, py::bytes def) -> py::object { caffe2::NetDef proto; CAFFE_ENFORCE(ParseProtobufFromLargeString(def, &proto)); auto* net = self->CreateNet(proto); CAFFE_ENFORCE(net); return py::cast(net, py::return_value_policy::reference_internal); }) .def( "create_blob", [](Workspace* self, const std::string& name) -> py::object { auto* blob = self->CreateBlob(name); return py::cast(blob, py::return_value_policy::reference_internal); }) .def("fetch_blob", &python_detail::fetchBlob) .def( "has_blob", [](Workspace* self, const std::string& name) { return self->HasBlob(name); }) .def( "_run_net", [](Workspace* self, py::bytes def) { caffe2::NetDef proto; CAFFE_ENFORCE(ParseProtobufFromLargeString(def, &proto)); py::gil_scoped_release g; CAFFE_ENFORCE(self->RunNetOnce(proto)); }) .def( "_run_operator", [](Workspace* self, py::bytes def) { caffe2::OperatorDef proto; CAFFE_ENFORCE(ParseProtobufFromLargeString(def, &proto)); py::gil_scoped_release g; CAFFE_ENFORCE(self->RunOperatorOnce(proto)); }) .def( "_run_plan", [](Workspace* self, py::bytes def) { caffe2::PlanDef proto; CAFFE_ENFORCE(ParseProtobufFromLargeString(def, &proto)); py::gil_scoped_release g; CAFFE_ENFORCE(self->RunPlan(proto)); }) .def_property_readonly_static("current", [](py::object /* type */) { auto ws = gWorkspaces.find(gCurrentWorkspaceName); CAFFE_ENFORCE(ws != gWorkspaces.end()); CAFFE_ENFORCE(ws->second.get()); return py::cast(ws->second.get(), py::return_value_policy::reference); }); // Gradients py::class_(m, "GradientWrapper") .def(py::init<>()) .def_readwrite("dense", &GradientWrapper::dense_) .def_readwrite("indices", &GradientWrapper::indices_) .def_readwrite("values", &GradientWrapper::values_) .def("is_sparse", &GradientWrapper::IsSparse) .def("is_dense", &GradientWrapper::IsDense) .def("is_empty", &GradientWrapper::IsEmpty); m.def( "get_gradient_defs", [](const py::bytes& op_def, std::vector output_gradients) { OperatorDef def; CAFFE_ENFORCE(ParseProtobufFromLargeString(op_def, &def)); CAFFE_ENFORCE(caffe2::GradientRegistry()->Has(def.type())); const auto& meta = GetGradientForOp(def, output_gradients); std::vector grad_ops; for (const auto& op : meta.ops_) { grad_ops.push_back(op.SerializeAsString()); } return std::pair, std::vector>{ grad_ops, meta.g_input_}; }); // DB py::class_(m, "Transaction") .def("put", &db::Transaction::Put) .def("commit", &db::Transaction::Commit); py::class_(m, "Cursor") .def("supports_seek", &db::Cursor::SupportsSeek) .def("seek_to_first", &db::Cursor::SeekToFirst) .def("next", &db::Cursor::Next) .def("key", [](db::Cursor* self) -> py::bytes { return self->key(); }) .def("value", [](db::Cursor* self) -> py::bytes { return self->value(); }) .def("valid", &db::Cursor::Valid); py::enum_(m, "Mode") .value("read", db::Mode::READ) .value("write", db::Mode::WRITE) .value("new", db::Mode::NEW) .export_values(); py::class_*/>(m, "DB") .def("new_transaction", &db::DB::NewTransaction) .def("new_cursor", &db::DB::NewCursor) .def("close", &db::DB::Close); m.def("create_db", &db::CreateDB); m.def("registered_dbs", []() { return caffe2::db::Caffe2DBRegistry()->Keys(); }); // OpSchema py::class_(m, "OpSchema") .def_property_readonly("file", &OpSchema::file) .def_property_readonly("line", &OpSchema::line) .def_property_readonly( "doc", &OpSchema::doc, py::return_value_policy::reference) .def_property_readonly("arg_desc", &OpSchema::arg_desc) .def_property_readonly("input_desc", &OpSchema::input_desc) .def_property_readonly("output_desc", &OpSchema::output_desc) // Note: this does not work yet, we will need to figure out how to pass // protobuf objects. .def("infer_tensor", &OpSchema::InferTensor) .def_static( "get", &OpSchemaRegistry::Schema, py::return_value_policy::reference) .def_static( "get_cpu_impl", DefinitionGetter(CPUOperatorRegistry()), py::return_value_policy::reference) .def_static( "get_cuda_impl", DefinitionGetter(CUDAOperatorRegistry()), py::return_value_policy::reference) .def_static( "get_gradient_impl", DefinitionGetter(GradientRegistry()), py::return_value_policy::reference); py::class_(m, "Predictor") .def( "__init__", [](Predictor& instance, py::bytes init_net, py::bytes predict_net) { CAFFE_ENFORCE(gWorkspace); NetDef init_net_, predict_net_; CAFFE_ENFORCE(ParseProtobufFromLargeString(init_net, &init_net_)); CAFFE_ENFORCE( ParseProtobufFromLargeString(predict_net, &predict_net_)); new (&instance) Predictor(init_net_, predict_net_, gWorkspace); }) .def( "run", [](Predictor& instance, std::vector inputs) -> std::vector { std::vector tensors; std::vector tensors_data(inputs.size()); for (auto i = 0; i < inputs.size(); ++i) { auto input = inputs[i]; CAFFE_ENFORCE( PyArray_Check(input.ptr()), "Input must be of type numpy array."); PyArrayObject* array = reinterpret_cast(input.ptr()); TensorFeeder().FeedTensor( DeviceOption(), array, &(tensors_data[i])); tensors.push_back(&(tensors_data[i])); } std::vector out; instance.run(tensors, &out); std::vector pyout; for (auto t : out) { pyout.push_back( TensorFetcher().FetchTensor(*t, true).obj); } return pyout; }); } #if PY_VERSION_HEX >= 0x03000000 static void* #else static void #endif NumpyImportArrayHelper() { import_array(); } void addGlobalMethods(py::module& m) { m.attr("is_asan") = py::bool_(CAFFE2_ASAN_ENABLED); m.attr("has_mkldnn") = py::bool_( #ifdef CAFFE2_HAS_MKL_DNN true #else // CAFFE2_HAS_MKL_DNN false #endif // CAFFE2_HAS_MKL_DNN ); m.def("global_init", [](std::vector args) -> void { int argc = args.size(); std::vector argv; for (auto& arg : args) { argv.push_back(const_cast(arg.data())); } char** pargv = argv.data(); CAFFE_ENFORCE(caffe2::GlobalInit(&argc, &pargv)); }); m.def("registered_operators", []() { std::set all_keys; // CPU operators for (const auto& name : caffe2::CPUOperatorRegistry()->Keys()) { all_keys.insert(name); } // CUDA operators for (const auto& name : caffe2::CUDAOperatorRegistry()->Keys()) { all_keys.insert(name); } // Ensure we are lexicographically ordered. std::vector keys; for (const auto& key : all_keys) { keys.push_back(key); } return keys; }); m.def("on_module_exit", []() { gWorkspaces.clear(); }); // create_if_missing not used by necessary for pybind to do // properly do function overloading. m.def("switch_workspace", [](Workspace* ws, py::object create_if_missing) { gWorkspace = ws; }); m.def( "switch_workspace", [](const std::string& name, const py::object create_if_missing) { if (create_if_missing == py::none()) { return switchWorkspaceInternal(name, false); } return switchWorkspaceInternal(name, create_if_missing.cast()); }, "Switch to the specified workspace, creating if necessary", py::arg("name"), py::arg("create_if_missing") = py::none()); m.def( "reset_workspace", [](const py::object& root_folder) { VLOG(1) << "Resetting workspace."; if (root_folder == py::none()) { gWorkspaces[gCurrentWorkspaceName].reset(new Workspace()); } else { gWorkspaces[gCurrentWorkspaceName].reset( new Workspace(root_folder.cast())); } gWorkspace = gWorkspaces[gCurrentWorkspaceName].get(); return true; }, "Reset the workspace", py::arg("root_folder") = py::none()); m.def("root_folder", []() { CAFFE_ENFORCE(gWorkspace); return gWorkspace->RootFolder(); }); m.def("current_workspace", []() { return gCurrentWorkspaceName; }); m.def("workspaces", []() { std::vector names; for (const auto& kv : gWorkspaces) { names.push_back(kv.first); } return names; }); m.def("nearby_opnames", [](const std::string& name) { std::vector alternatives; int editTolerance = 3; for (auto it : caffe2::CPUOperatorRegistry()->Keys()) { if(editDistance(it, name, editTolerance) < editTolerance + 1) { alternatives.push_back(it); } } return alternatives; }); m.def("local_blobs", []() { CAFFE_ENFORCE(gWorkspace); return gWorkspace->LocalBlobs(); }); m.def("blobs", []() { CAFFE_ENFORCE(gWorkspace); return gWorkspace->Blobs(); }); m.def("has_blob", [](const std::string& name) { CAFFE_ENFORCE(gWorkspace); return gWorkspace->HasBlob(name); }); m.def("create_net", [](py::bytes net_def) { caffe2::NetDef proto; CAFFE_ENFORCE( ParseProtobufFromLargeString(net_def, &proto), "Can't parse net proto: ", std::string(net_def)); CAFFE_ENFORCE( gWorkspace->CreateNet(proto), "Error creating net with proto: ", std::string(net_def)); return true; }); m.def("run_net", [](const std::string& name, int num_iter) { CAFFE_ENFORCE(gWorkspace); CAFFE_ENFORCE(gWorkspace->GetNet(name), "Can't find net ", name); py::gil_scoped_release g; for (int i = 0; i < num_iter; i++) { CAFFE_ENFORCE(gWorkspace->RunNet(name), "Error running net ", name); } return true; }); m.def( "benchmark_net", [](const std::string& name, size_t warmup_runs, size_t main_runs, bool run_individual) { CAFFE_ENFORCE(gWorkspace); auto* net = gWorkspace->GetNet(name); CAFFE_ENFORCE(net); py::gil_scoped_release g; vector stat = net->TEST_Benchmark(warmup_runs, main_runs, run_individual); return stat; }); m.def("delete_net", [](const std::string& name) { CAFFE_ENFORCE(gWorkspace); gWorkspace->DeleteNet(name); return true; }); m.def("nets", []() { return gWorkspace->Nets(); }); m.def("run_operator_once", [](const py::bytes& op_def) { CAFFE_ENFORCE(gWorkspace); OperatorDef def; CAFFE_ENFORCE(ParseProtobufFromLargeString(op_def, &def)); py::gil_scoped_release g; CAFFE_ENFORCE(gWorkspace->RunOperatorOnce(def)); return true; }); m.def("run_net_once", [](const py::bytes& net_def) { CAFFE_ENFORCE(gWorkspace); NetDef def; CAFFE_ENFORCE(ParseProtobufFromLargeString(net_def, &def)); py::gil_scoped_release g; CAFFE_ENFORCE(gWorkspace->RunNetOnce(def)); return true; }); m.def("run_plan", [](const py::bytes& plan_def) { CAFFE_ENFORCE(gWorkspace); const std::string& msg = std::move(plan_def); PlanDef def; CAFFE_ENFORCE(ParseProtobufFromLargeString(msg, &def)); py::gil_scoped_release g; CAFFE_ENFORCE(gWorkspace->RunPlan(def)); return true; }); m.def( "infer_shapes_and_types_from_workspace", [](const std::vector& net_protos) { CAFFE_ENFORCE(gWorkspace); // Parse protobuffers to NetDefs std::vector> nets; for (auto proto : net_protos) { std::unique_ptr def(new NetDef()); def.get()->ParseFromString(proto); nets.push_back(std::move(def)); } auto blob_info = InferBlobShapesAndTypesFromWorkspace(gWorkspace, nets); std::string protob; CAFFE_ENFORCE(blob_info.SerializeToString(&protob)); return py::bytes(protob); }); m.def( "infer_shapes_and_types_from_map", [](const std::vector& net_protos, const std::map> blob_dimensions) { // Parse protobuffers to NetDefs std::vector> nets; for (auto proto : net_protos) { std::unique_ptr def(new NetDef()); def.get()->ParseFromString(proto); nets.push_back(std::move(def)); } auto blob_info = InferBlobShapesAndTypesFromMap(blob_dimensions, nets); std::string protob; CAFFE_ENFORCE(blob_info.SerializeToString(&protob)); return py::bytes(protob); }); m.def("create_blob", [](const std::string& name) { CAFFE_ENFORCE(gWorkspace); CAFFE_ENFORCE(gWorkspace->CreateBlob(name)); return true; }); m.def("fetch_blob", [](const std::string& name) -> py::object { return python_detail::fetchBlob(gWorkspace, name); }); m.def( "feed_blob", [](const std::string& name, py::object arg, py::object device_option) { DeviceOption option; if (device_option != py::none()) { // If we have a device option passed in, read it. CAFFE_ENFORCE(ParseProtobufFromLargeString( py::bytes(device_option).cast(), &option)); } auto* blob = gWorkspace->CreateBlob(name); if (PyArray_Check(arg.ptr())) { // numpy array PyArrayObject* array = reinterpret_cast(arg.ptr()); auto feeder = CreateFeeder(option.device_type()); CAFFE_ENFORCE(feeder, "Unknown device type encountered in FeedBlob."); feeder->Feed(option, array, blob); return true; } if (PyString_Check(arg.ptr())) { // string *blob->GetMutable() = arg.cast(); return true; } CAFFE_THROW( "Unexpected type of argument - only numpy array or string are " "supported for feeding"); return false; }, "", py::arg("name"), py::arg("arg"), py::arg("device_option") = py::none()); m.def("serialize_blob", [](const std::string& name) { CAFFE_ENFORCE(gWorkspace); auto* blob = gWorkspace->GetBlob(name); CAFFE_ENFORCE(blob); return py::bytes(blob->Serialize(name)); }); m.def( "deserialize_blob", [](const std::string& name, const py::bytes& serialized) { CAFFE_ENFORCE(gWorkspace); auto* blob = gWorkspace->CreateBlob(name); blob->Deserialize(serialized.cast()); }); // we support 2 possible signatures of python op: (inputs, outputs) or // (inputs, outputs, workspace) m.def("register_python_op", [](py::object func, bool pass_workspace) { using namespace python_detail; CAFFE_ENFORCE(func != py::none()); const std::string name = func.attr("__name__").cast(); // Unique name since registry is never cleared. const std::string token = name + to_string(gRegistery().size()); CAFFE_ENFORCE(gRegistery().find(name) == gRegistery().end()); gRegistery()[token] = Func{func, pass_workspace}; return token; }); m.def( "register_python_gradient_op", [](const std::string& token, py::object func) { using namespace python_detail; CAFFE_ENFORCE(func != py::none()); CAFFE_ENFORCE(gRegistery().find(token) != gRegistery().end()); // For global sanity gradient ops shouldn't access workspace gRegistery()[token + "_gradient"] = Func{func, false}; }); #define CAFFE2_CPU_FEATURE_SUPPORT(feature) \ m.def("builtin_cpu_supports_" #feature, []() { \ return __builtin_cpu_supports(#feature); \ }) // Clang does not support __builtin_cpu_supports until // revision r240994: // http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20150629/131941.html #if ( \ __clang__ && ((__apple_build_version__ && \ ((__clang_major__ == 8 && __clang_minor__ == 0) || \ (__clang_major__ <= 7))) || \ (!__apple_build_version__ && \ ((__clang_major__ == 3 && __clang_minor__ < 7) || \ (__clang_major__ <= 2))))) #warning \ "Compiling without AVX2. Please consider upgrading your version of Clang." // Provide a dummy avx2 flag. m.def("builtin_cpu_supports_avx2", []() { return false; }); #elif defined(CAFFE2_NO_BUILTIN_CPU_SUPPORTS) && !defined(__AVX2__) // If the compile does not support builtin_cpu_supports, and avx2 is not // manually specified, we mark it as not-supported. m.def("builtin_cpu_supports_avx2", []() { return false; }); #else CAFFE2_CPU_FEATURE_SUPPORT(avx2); #endif #undef CAFFE2_CPU_FEATURE_SUPPORT auto initialize = [&]() { // Initialization of the module #if PY_VERSION_HEX >= 0x03000000 ([]() -> void* { #else ([]() -> void { #endif // This is a workaround so we can deal with numpy's import_array behavior. // Despite the fact that you may think import_array() is a function call, // it is defined as a macro (as of 1.10). import_array(); })(); // Single threaded, so safe static bool initialized = false; if (initialized) { return; } // We will create a default workspace for us to run stuff. switchWorkspaceInternal("default", true); gCurrentWorkspaceName = "default"; initialized = true; }; initialize(); }; PYBIND11_PLUGIN(caffe2_pybind11_state) { py::module m( "caffe2_pybind11_state", "pybind11 stateful interface to Caffe2 workspaces"); addGlobalMethods(m); addObjectMethods(m); return m.ptr(); } } // namespace python } // namespace caffe2