r"""Importing this file must **not** initialize CUDA context. test_distributed relies on this assumption to properly run. This means that when this is imported no CUDA calls shall be made, including torch.cuda.device_count(), etc. torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported. """ import sys import os import platform import re import gc import types import math from functools import partial import inspect import io import argparse import unittest import warnings import random import contextlib import socket import subprocess import time from collections import OrderedDict from contextlib import contextmanager from functools import wraps from itertools import product from copy import deepcopy from numbers import Number import tempfile import json from urllib.request import urlopen import __main__ import errno from typing import cast, Any, Iterable, Optional from torch.testing._internal import expecttest from torch.testing import \ (_compare_tensors_internal, _compare_scalars_internal, _compare_return_type, floating_types_and, integral_types, complex_types) import torch import torch.cuda from torch._utils_internal import get_writable_path from torch._six import string_classes import torch.backends.cudnn import torch.backends.mkl from enum import Enum from torch.autograd import gradcheck from torch.autograd.gradcheck import gradgradcheck torch.backends.disable_global_flags() IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle' class ProfilingMode(Enum): LEGACY = 1 SIMPLE = 2 PROFILING = 3 def cppProfilingFlagsToProfilingMode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) if old_prof_exec_state: if old_prof_mode_state: return ProfilingMode.PROFILING else: return ProfilingMode.SIMPLE else: return ProfilingMode.LEGACY @contextmanager def enable_profiling_mode_for_profiling_tests(): if GRAPH_EXECUTOR == ProfilingMode.PROFILING: old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) try: yield finally: if GRAPH_EXECUTOR == ProfilingMode.PROFILING: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) @contextmanager def enable_profiling_mode(): old_prof_exec_state = torch._C._jit_set_profiling_executor(True) old_prof_mode_state = torch._C._jit_set_profiling_mode(True) try: yield finally: torch._C._jit_set_profiling_executor(old_prof_exec_state) torch._C._jit_set_profiling_mode(old_prof_mode_state) @contextmanager def num_profiled_runs(num_runs): old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs) try: yield finally: torch._C._jit_set_num_profiled_runs(old_num_runs) func_call = torch._C.ScriptFunction.__call__ meth_call = torch._C.ScriptMethod.__call__ def prof_callable(callable, *args, **kwargs): if 'profile_and_replay' in kwargs: del kwargs['profile_and_replay'] if GRAPH_EXECUTOR == ProfilingMode.PROFILING: with enable_profiling_mode_for_profiling_tests(): callable(*args, **kwargs) return callable(*args, **kwargs) return callable(*args, **kwargs) def prof_func_call(*args, **kwargs): return prof_callable(func_call, *args, **kwargs) def prof_meth_call(*args, **kwargs): return prof_callable(meth_call, *args, **kwargs) torch._C.ScriptFunction.__call__ = prof_func_call torch._C.ScriptMethod.__call__ = prof_meth_call def _get_test_report_path(): # allow users to override the test file location. We need this # because the distributed tests run the same test file multiple # times with different configurations. override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE') test_source = override if override is not None else 'python-unittest' return os.path.join('test-reports', test_source) parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--subprocess', action='store_true', help='whether to run each test in a subprocess') parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--accept', action='store_true') parser.add_argument('--ge_config', type=str) parser.add_argument('--repeat', type=int, default=1) parser.add_argument('--test_bailouts', action='store_true') parser.add_argument('--save-xml', nargs='?', type=str, const=_get_test_report_path(), default=_get_test_report_path() if bool(os.environ.get('IN_CIRCLECI')) else None) parser.add_argument('--discover-tests', action='store_true') parser.add_argument('--log-suffix', type=str, default="") parser.add_argument('--run-parallel', type=int, default=1) args, remaining = parser.parse_known_args() if args.ge_config == 'legacy': GRAPH_EXECUTOR = ProfilingMode.LEGACY elif args.ge_config == 'profiling': GRAPH_EXECUTOR = ProfilingMode.PROFILING elif args.ge_config == 'simple': GRAPH_EXECUTOR = ProfilingMode.SIMPLE else: # infer flags based on the default settings GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode() LOG_SUFFIX = args.log_suffix RUN_PARALLEL = args.run_parallel TEST_BAILOUTS = args.test_bailouts TEST_DISCOVER = args.discover_tests TEST_IN_SUBPROCESS = args.subprocess TEST_SAVE_XML = args.save_xml REPEAT_COUNT = args.repeat SEED = args.seed if not expecttest.ACCEPT: expecttest.ACCEPT = args.accept UNITTEST_ARGS = [sys.argv[0]] + remaining torch.manual_seed(SEED) def wait_for_process(p): try: return p.wait() except KeyboardInterrupt: # Give `p` a chance to handle KeyboardInterrupt. Without this, # `pytest` can't print errors it collected so far upon KeyboardInterrupt. exit_status = p.wait(timeout=5) if exit_status is not None: return exit_status else: p.kill() raise except: # noqa E722, copied from python core library p.kill() raise finally: # Always call p.wait() to ensure exit p.wait() def shell(command, cwd=None, env=None): sys.stdout.flush() sys.stderr.flush() # The following cool snippet is copied from Py3 core library subprocess.call # only the with # 1. `except KeyboardInterrupt` block added for SIGINT handling. # 2. In Py2, subprocess.Popen doesn't return a context manager, so we do # `p.wait()` in a `final` block for the code to be portable. # # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323 assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens" p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env) return wait_for_process(p) # Used to run the same test with different tensor types def repeat_test_for_types(dtypes): def repeat_helper(f): @wraps(f) def call_helper(self, *args): for dtype in dtypes: with TestCase.subTest(self, dtype=dtype): f(self, *args, dtype=dtype) return call_helper return repeat_helper # Environment variable `IS_PYTORCH_CI` is set in `.jenkins/common.sh`. IS_PYTORCH_CI = bool(os.environ.get('IS_PYTORCH_CI')) def discover_test_cases_recursively(suite_or_case): if isinstance(suite_or_case, unittest.TestCase): return [suite_or_case] rc = [] for element in suite_or_case: rc.extend(discover_test_cases_recursively(element)) return rc def get_test_names(test_cases): return ['.'.join(case.id().split('.')[-2:]) for case in test_cases] def chunk_list(lst, nchunks): return [lst[i::nchunks] for i in range(nchunks)] def run_tests(argv=UNITTEST_ARGS): if TEST_DISCOVER: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) for name in get_test_names(test_cases): print(name) elif TEST_IN_SUBPROCESS: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) failed_tests = [] for case in test_cases: test_case_full_name = case.id().split('.', 1)[1] exitcode = shell([sys.executable] + argv + [test_case_full_name]) if exitcode != 0: failed_tests.append(test_case_full_name) assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format( len(failed_tests), '\n\t'.join(failed_tests)) elif RUN_PARALLEL > 1: suite = unittest.TestLoader().loadTestsFromModule(__main__) test_cases = discover_test_cases_recursively(suite) test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL) processes = [] for i in range(RUN_PARALLEL): command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i] processes.append(subprocess.Popen(command, universal_newlines=True)) failed = False for p in processes: failed |= wait_for_process(p) != 0 assert not failed, "Some test shards have failed" elif TEST_SAVE_XML is not None: # import here so that non-CI doesn't need xmlrunner installed import xmlrunner test_report_path = TEST_SAVE_XML + LOG_SUFFIX os.makedirs(test_report_path, exist_ok=True) verbose = '--verbose' in argv or '-v' in argv if verbose: print('Test results will be stored in {}'.format(test_report_path)) unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1)) elif REPEAT_COUNT > 1: for _ in range(REPEAT_COUNT): if not unittest.main(exit=False, argv=argv).result.wasSuccessful(): sys.exit(-1) else: unittest.main(argv=argv) IS_WINDOWS = sys.platform == "win32" IS_MACOS = sys.platform == "darwin" IS_PPC = platform.machine() == "ppc64le" if IS_WINDOWS: @contextmanager def TemporaryFileName(): # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile # opens the file, and it cannot be opened multiple times in Windows. To support Windows, # close the file after creation and try to remove it manually f = tempfile.NamedTemporaryFile(delete=False) try: f.close() yield f.name finally: os.unlink(f.name) else: @contextmanager # noqa: T484 def TemporaryFileName(): with tempfile.NamedTemporaryFile() as f: yield f.name def _check_module_exists(name): r"""Returns if a top-level module with :attr:`name` exists *without** importing it. This is generally safer than try-catch block around a `import X`. It avoids third party libraries breaking assumptions of some of our tests, e.g., setting multiprocessing start method when imported (see librosa/#747, torchvision/#544). """ import importlib import importlib.util spec = importlib.util.find_spec(name) return spec is not None TEST_NUMPY = _check_module_exists('numpy') TEST_SCIPY = _check_module_exists('scipy') TEST_MKL = torch.backends.mkl.is_available() TEST_NUMBA = _check_module_exists('numba') TEST_DILL = _check_module_exists('dill') TEST_LIBROSA = _check_module_exists('librosa') # Python 2.7 doesn't have spawn NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1' TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1' TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1' TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1' TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1' # Enables tests that are slow to run (disabled by default) TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1' # Disables non-slow tests (these tests enabled by default) # This is usually used in conjunction with TEST_WITH_SLOW to # run *only* slow tests. (I could have done an enum, but # it felt a little awkward. TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1' if TEST_NUMPY: import numpy as np # Dict of NumPy dtype -> torch dtype (when the correspondence exists) numpy_to_torch_dtype_dict = { np.bool : torch.bool, np.uint8 : torch.uint8, np.int8 : torch.int8, np.int16 : torch.int16, np.int32 : torch.int32, np.int64 : torch.int64, np.float16 : torch.float16, np.float32 : torch.float32, np.float64 : torch.float64, np.complex64 : torch.complex64, np.complex128 : torch.complex128 } # Dict of torch dtype -> NumPy dtype torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} ALL_TENSORTYPES = [torch.float, torch.double, torch.half] # bfloat16 bringup is currently only available on ROCm # ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES # when bfloat16 bringup is complete on all platforms if TEST_WITH_ROCM: ALL_TENSORTYPES2 = [torch.float, torch.double, torch.half, torch.bfloat16] else: ALL_TENSORTYPES2 = ALL_TENSORTYPES def skipIfRocm(fn): @wraps(fn) def wrapper(*args, **kwargs): if TEST_WITH_ROCM: raise unittest.SkipTest("test doesn't currently work on the ROCm stack") else: fn(*args, **kwargs) return wrapper # This decorator can be used for API tests that call torch.set_deterministic(). # When the test is finished, it will restore the previous deterministic flag # setting. Also, if CUDA >= 10.2, this will set the environment variable # CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that setting # is not thrown during the test unless the test changes that variable on purpose. # The previous CUBLAS_WORKSPACE_CONFIG setting will also be restored once the # test is finished. def wrapDeterministicFlagAPITest(fn): @wraps(fn) def wrapper(*args, **kwargs): deterministic_restore = torch.is_deterministic() is_cuda10_2_or_higher = ( (torch.version.cuda is not None) and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2])) if is_cuda10_2_or_higher: cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG' cublas_config_restore = os.environ.get(cublas_var_name) os.environ[cublas_var_name] = ':4096:8' def restore(): torch.set_deterministic(deterministic_restore) if is_cuda10_2_or_higher: cur_cublas_config = os.environ.get(cublas_var_name) if cublas_config_restore is None: if cur_cublas_config is not None: del os.environ[cublas_var_name] else: os.environ[cublas_var_name] = cublas_config_restore try: fn(*args, **kwargs) except RuntimeError: restore() raise else: restore() return wrapper def skipIfCompiledWithoutNumpy(fn): # Even if the numpy module is present, if `USE_NUMPY=0` is used during the # build, numpy tests will fail numpy_support = TEST_NUMPY if numpy_support: try: # The numpy module is present, verify that PyTorch is compiled with # numpy support torch.from_numpy(np.array([2, 2])) except RuntimeError: numpy_support = False @wraps(fn) def wrapper(*args, **kwargs): if not numpy_support: raise unittest.SkipTest("PyTorch was compiled without numpy support") else: fn(*args, **kwargs) return wrapper def _test_function(fn, device): def run_test_function(self): return fn(self, device) return run_test_function def skipIfNoLapack(fn): @wraps(fn) def wrapper(*args, **kwargs): if not torch._C.has_lapack: raise unittest.SkipTest('PyTorch compiled without Lapack') else: fn(*args, **kwargs) return wrapper def skipIfNotRegistered(op_name, message): """Wraps the decorator to hide the import of the `core`. Args: op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`. message: message to fail with. Usage: @skipIfNotRegistered('MyOp', 'MyOp is not linked!') This will check if 'MyOp' is in the caffe2.python.core """ try: from caffe2.python import core skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS, message) except ImportError: skipper = unittest.skip("Cannot import `caffe2.python.core`") return skipper def skipIfNoSciPy(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_SCIPY: raise unittest.SkipTest("test require SciPy, but SciPy not found") else: fn(*args, **kwargs) return wrapper def slowTest(fn): @wraps(fn) def wrapper(*args, **kwargs): if not TEST_WITH_SLOW: raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") else: fn(*args, **kwargs) wrapper.__dict__['slow_test'] = True return wrapper def skipCUDAMemoryLeakCheckIf(condition): def dec(fn): if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True fn._do_cuda_memory_leak_check = not condition return fn return dec def skipCUDANonDefaultStreamIf(condition): def dec(fn): if getattr(fn, '_do_cuda_non_default_stream', True): # if current True fn._do_cuda_non_default_stream = not condition return fn return dec def suppress_warnings(fn): @wraps(fn) def wrapper(*args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") fn(*args, **kwargs) return wrapper def get_cpu_type(type_name): module, name = type_name.rsplit('.', 1) assert module == 'torch.cuda' return getattr(torch, name) def get_gpu_type(type_name): if isinstance(type_name, type): type_name = '{}.{}'.format(type_name.__module__, type_name.__name__) module, name = type_name.rsplit('.', 1) assert module == 'torch' return getattr(torch.cuda, name) def to_gpu(obj, type_map=None): if type_map is None: type_map = {} if isinstance(obj, torch.Tensor): assert obj.is_leaf t = type_map.get(obj.type(), get_gpu_type(obj.type())) with torch.no_grad(): res = obj.clone().type(t) res.requires_grad = obj.requires_grad return res elif torch.is_storage(obj): return obj.new().resize_(obj.size()).copy_(obj) elif isinstance(obj, list): return [to_gpu(o, type_map) for o in obj] elif isinstance(obj, tuple): return tuple(to_gpu(o, type_map) for o in obj) else: return deepcopy(obj) def get_function_arglist(func): return inspect.getfullargspec(func).args def set_rng_seed(seed): torch.manual_seed(seed) random.seed(seed) if TEST_NUMPY: np.random.seed(seed) @contextlib.contextmanager def freeze_rng_state(): rng_state = torch.get_rng_state() if torch.cuda.is_available(): cuda_rng_state = torch.cuda.get_rng_state() yield if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) torch.set_rng_state(rng_state) @contextlib.contextmanager def set_default_dtype(dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) yield torch.set_default_dtype(saved_dtype) def iter_indices(tensor): if tensor.dim() == 0: return range(0) if tensor.dim() == 1: return range(tensor.size(0)) return product(*(range(s) for s in tensor.size())) def is_iterable(obj): try: iter(obj) return True except TypeError: return False class CudaNonDefaultStream(): def __enter__(self): # Before starting CUDA test save currently active streams on all # CUDA devices and set new non default streams to all CUDA devices # to ensure CUDA tests do not use default stream by mistake. beforeDevice = torch.cuda.current_device() self.beforeStreams = [] for d in range(torch.cuda.device_count()): self.beforeStreams.append(torch.cuda.current_stream(d)) deviceStream = torch.cuda.Stream(device=d) torch._C._cuda_setStream(deviceStream._cdata) torch._C._cuda_setDevice(beforeDevice) def __exit__(self, exec_type, exec_value, traceback): # After completing CUDA test load previously active streams on all # CUDA devices. beforeDevice = torch.cuda.current_device() for d in range(torch.cuda.device_count()): torch._C._cuda_setStream(self.beforeStreams[d]._cdata) torch._C._cuda_setDevice(beforeDevice) class CudaMemoryLeakCheck(): def __init__(self, testcase, name=None): self.name = testcase.id() if name is None else name self.testcase = testcase # initialize context & RNG to prevent false positive detections # when the test is the first to initialize those from torch.testing._internal.common_cuda import initialize_cuda_context_rng initialize_cuda_context_rng() @staticmethod def get_cuda_memory_usage(): # we don't need CUDA synchronize because the statistics are not tracked at # actual freeing, but at when marking the block as free. num_devices = torch.cuda.device_count() gc.collect() return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices)) def __enter__(self): self.befores = self.get_cuda_memory_usage() def __exit__(self, exec_type, exec_value, traceback): # Don't check for leaks if an exception was thrown if exec_type is not None: return afters = self.get_cuda_memory_usage() for i, (before, after) in enumerate(zip(self.befores, afters)): self.testcase.assertEqual( before, after, msg='{} leaked {} bytes CUDA memory on device {}'.format( self.name, after - before, i)) # "min_satisfying_examples" setting has been deprecated in hypythesis # 3.56.0 and removed in hypothesis 4.x try: import hypothesis def settings(*args, **kwargs): if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0): kwargs.pop('min_satisfying_examples') return hypothesis.settings(*args, **kwargs) hypothesis.settings.register_profile( "pytorch_ci", settings( derandomize=True, suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=50, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "dev", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=10, verbosity=hypothesis.Verbosity.normal)) hypothesis.settings.register_profile( "debug", settings( suppress_health_check=[hypothesis.HealthCheck.too_slow], database=None, max_examples=1000, verbosity=hypothesis.Verbosity.verbose)) hypothesis.settings.load_profile( "pytorch_ci" if IS_PYTORCH_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev') ) except ImportError: print('Fail to import hypothesis in common_utils, tests are not derandomized') disabled_test_from_issues = None def check_disabled(test_name): global disabled_test_from_issues if disabled_test_from_issues is None: disabled_test_from_issues = {} def read_and_process(): url = 'https://raw.githubusercontent.com/zdevito/pytorch_disabled_tests/master/result.json' contents = urlopen(url, timeout=1).read().decode('utf-8') the_response = json.loads(contents) for item in the_response['items']: title = item['title'] key = 'DISABLED ' if title.startswith(key): test_name = title[len(key):].strip() disabled_test_from_issues[test_name] = item['html_url'] if not IS_SANDCASTLE and os.getenv("PYTORCH_RUN_DISABLED_TESTS", "0") != "1": try: read_and_process() except Exception: print("Couldn't download test skip set, leaving all tests enabled...") if test_name in disabled_test_from_issues: raise unittest.SkipTest( "Test is disabled because an issue exists disabling it: {}".format(disabled_test_from_issues[test_name]) + " To enable set the environment variable PYTORCH_RUN_DISABLED_TESTS=1") # Acquires the comparison dtype, required since isclose # requires both inputs have the same dtype, and isclose is not supported # for some device x dtype combinations. # NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types # support needed bfloat16 comparison methods. # NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't # support needed float16 comparison methods. # TODO: Update this once bfloat16 and float16 are better supported. def get_comparison_dtype(a, b): # TODO: update this when promote_types supports bfloat16 and/or # isclose supports bfloat16. a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype compare_dtype = torch.promote_types(a_dtype, b_dtype) # non-CUDA (CPU, for example) float16 -> float32 # TODO: update this when isclose is implemented for CPU float16 if (compare_dtype is torch.float16 and (a.device != b.device or a.device.type != 'cuda' or b.device.type != 'cuda')): compare_dtype = torch.float32 return compare_dtype class TestCase(expecttest.TestCase): # NOTE: "precision" lets classes and generated tests set minimum # atol values when comparing tensors. Used by @precisionOverride, for # example. # TODO: provide a better mechanism for generated tests to set rtol/atol. _precision: float = 0 @property def precision(self) -> float: return self._precision @precision.setter def precision(self, prec: float) -> None: self._precision = prec _do_cuda_memory_leak_check = False _do_cuda_non_default_stream = False def __init__(self, method_name='runTest'): super().__init__(method_name) test_method = getattr(self, method_name, None) if test_method is not None: # Wraps the tested method if we should do CUDA memory check. self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True) # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044 if self._do_cuda_memory_leak_check and not IS_WINDOWS: self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors) # Wraps the tested method if we should enforce non default CUDA stream. self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True) if self._do_cuda_non_default_stream and not IS_WINDOWS and not TEST_WITH_ROCM: self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream) def assertLeaksNoCudaTensors(self, name=None): name = self.id() if name is None else name return CudaMemoryLeakCheck(self, name) def enforceNonDefaultStream(self): return CudaNonDefaultStream() def wrap_with_cuda_policy(self, method_name, policy): test_method = getattr(self, method_name) # the import below may initialize CUDA context, so we do it only if # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream # is True. from torch.testing._internal.common_cuda import TEST_CUDA fullname = self.id().lower() # class_name.method_name if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname): setattr(self, method_name, self.wrap_method_with_cuda_policy(test_method, policy)) def wrap_method_with_cuda_policy(self, method, policy): # Assumes that `method` is the tested function in `self`. # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope # alive, so this cannot be done in setUp and tearDown because # tearDown is run unconditionally no matter whether the test # passes or not. For the same reason, we can't wrap the `method` # call in try-finally and always do the check. @wraps(method) def wrapper(self, *args, **kwargs): with policy(): method(*args, **kwargs) return types.MethodType(wrapper, self) def wrap_with_cuda_memory_check(self, method): return self.wrap_method_with_cuda_policy(method, self.assertLeaksNoCudaTensors) def setUp(self): if TEST_SKIP_FAST: if not getattr(self, self._testMethodName).__dict__.get('slow_test', False): raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST") check_disabled(str(self)) set_rng_seed(SEED) def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device='cpu'): # Assert not given impossible combination, where the sparse dims have # empty numel, but nnz > 0 makes the indices containing values. assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments' v_size = [nnz] + list(size[sparse_dim:]) v = torch.randn(*v_size, device=device) i = torch.rand(sparse_dim, nnz, device=device) i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i)) i = i.to(torch.long) if is_uncoalesced: v = torch.cat([v, torch.randn_like(v)], 0) i = torch.cat([i, i], 1) x = torch.sparse_coo_tensor(i, v, torch.Size(size)) if not is_uncoalesced: x = x.coalesce() else: # FIXME: `x` is a sparse view of `v`. Currently rebase_history for # sparse views is not implemented, so this workaround is # needed for inplace operations done on `x`, e.g., copy_(). # Remove after implementing something equivalent to CopySlice # for sparse views. # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards x = x.detach().clone() return x, x._indices().clone(), x._values().clone() def safeToDense(self, t): r = self.safeCoalesce(t) return r.to_dense() def safeCoalesce(self, t): tc = t.coalesce() self.assertEqual(tc.to_dense(), t.to_dense()) self.assertTrue(tc.is_coalesced()) # Our code below doesn't work when nnz is 0, because # then it's a 0D tensor, not a 2D tensor. if t._nnz() == 0: self.assertEqual(t._indices(), tc._indices()) self.assertEqual(t._values(), tc._values()) return tc value_map = {} for idx, val in zip(t._indices().t(), t._values()): idx_tup = tuple(idx.tolist()) if idx_tup in value_map: value_map[idx_tup] += val else: value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val new_indices = sorted(list(value_map.keys())) new_values = [value_map[idx] for idx in new_indices] if t._values().ndimension() < 2: new_values = t._values().new(new_values) else: new_values = torch.stack(new_values) new_indices = t._indices().new(new_indices).t() tg = t.new(new_indices, new_values, t.size()) self.assertEqual(tc._indices(), tg._indices()) self.assertEqual(tc._values(), tg._values()) if t.is_coalesced(): self.assertEqual(tc._indices(), t._indices()) self.assertEqual(tc._values(), t._values()) return tg # Compares the given Torch and NumPy functions on the given tensor-like object. # NOTE: both torch_fn and np_fn should be functions that take a single # tensor (array). If the torch and/or NumPy function require additional # arguments then wrap the function in a lambda or pass a partial function. # TODO: support bfloat16 comparisons # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol) def compare_with_numpy(self, torch_fn, np_fn, tensor_like, device=None, dtype=None, **kwargs): assert TEST_NUMPY assert dtype is not torch.bfloat16 if isinstance(tensor_like, torch.Tensor): assert device is None assert dtype is None a = tensor_like.detach().cpu().numpy() t = tensor_like else: a = np.array(tensor_like, dtype=torch_to_numpy_dtype_dict[dtype]) t = torch.tensor(tensor_like, device=device, dtype=dtype) np_result = np_fn(a) torch_result = torch_fn(t).cpu() # Converts arrays to tensors if isinstance(np_result, np.ndarray): try: np_result = torch.from_numpy(np_result) except Exception: # NOTE: copying an array before conversion is necessary when, # for example, the array has negative strides. np_result = torch.from_numpy(np_result.copy()) self.assertEqual(np_result, torch_result, **kwargs) # Some analysis of tolerance by logging tests from test_torch.py can be found # in https://github.com/pytorch/pytorch/pull/32538. # dtype name : (rtol, atol) dtype_precisions = { torch.float16 : (0.001, 1e-5), torch.bfloat16 : (0.016, 1e-5), torch.float32 : (1.3e-6, 1e-5), torch.float64 : (1e-7, 1e-7), torch.complex32 : (0.001, 1e-5), torch.complex64 : (1.3e-6, 1e-5), torch.complex128 : (1e-7, 1e-7), } # Returns the "default" rtol and atol for comparing scalars or # tensors of the given dtypes. def _getDefaultRtolAndAtol(self, dtype0, dtype1): rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0], self.dtype_precisions.get(dtype1, (0, 0))[0]) atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1], self.dtype_precisions.get(dtype1, (0, 0))[1]) return rtol, atol # Checks if two dense tensors are equal(-ish), returning (True, None) # when they are and (False, debug_msg) when they are not. # If exact_dtype is true both tensors must have the same dtype. # If exact_device is true both tensors must be on the same device. # See the "Test Framework Tensor 'Equality'" note for more details. # NOTE: tensors on different devices are moved to the CPU to be compared when # exact_device is False. # NOTE: this function checks the tensors' devices, sizes, and dtypes # and acquires the appropriate device, dtype, rtol and atol to compare # them with. It then calls _compare_tensors_internal. def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True, exact_dtype=True, exact_device=False) -> _compare_return_type: assert (atol is None) == (rtol is None) if not isinstance(a, torch.Tensor): return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a)) if not isinstance(b, torch.Tensor): return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b)) # Validates tensors are on the same device if exact_device and a.device != b.device: return (False, ("Attempted to compare equality of tensors on " "different devices! Got devices {0} and " "{1}.".format(a.device, b.device))) # Compares tensors of different devices on the CPU if a.device != b.device: a = a.cpu() b = b.cpu() # Checks size matches if a.size() != b.size(): return (False, ("Attempted to compare equality of tensors with " "different sizes. Got sizes {0} and {1}.").format(a.size(), b.size())) # Checks dtype (if exact_dtype) if exact_dtype and a.dtype is not b.dtype: return (False, ("Attempted to compare equality of tensors with " "different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype)) # Acquires rtol and atol if rtol is None: rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype) atol = max(atol, self.precision) # Converts to comparison dtype dtype = get_comparison_dtype(a, b) a = a.to(dtype) b = b.to(dtype) return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) # Checks if two scalars are equal(-ish), returning (True, None) # when they are and (False, debug_msg) when they are not. # NOTE: this function just acquires rtol and atol # before calling _compare_scalars_internal. def _compareScalars(self, a, b, *, rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type: # Acquires rtol and atol assert (atol is None) == (rtol is None) if rtol is None: if isinstance(a, complex) or isinstance(b, complex): rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64) elif isinstance(a, float) or isinstance(b, float): rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32) else: rtol, atol = 0, 0 atol = max(atol, self.precision) return _compare_scalars_internal(a, b, rtol=cast(float, rtol), atol=cast(float, atol), equal_nan=equal_nan) def assertEqualIgnoreType(self, *args, **kwargs) -> None: # If you are seeing this function used, that means test is written wrongly # and deserves detailed investigation return self.assertEqual(*args, exact_dtype=False, **kwargs) # Compares x and y # TODO: default exact_device to True def assertEqual(self, x, y, msg: Optional[str] = None, *, atol: Optional[float] = None, rtol: Optional[float] = None, equal_nan=True, exact_dtype=True, exact_device=False) -> None: assert (atol is None) == (rtol is None), "If one of atol or rtol is specified the other must be, too" # Tensor x Number and Number x Tensor comparisons if isinstance(x, torch.Tensor) and isinstance(y, Number): self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(y, torch.Tensor) and isinstance(x, Number): self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Tensor x np.bool elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_): self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_): self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) # Tensor x Tensor elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor): super().assertEqual(x.is_sparse, y.is_sparse, msg=msg) super().assertEqual(x.is_quantized, y.is_quantized, msg=msg) if x.is_sparse: x = self.safeCoalesce(x) y = self.safeCoalesce(y) indices_result, debug_msg = self._compareTensors(x._indices(), y._indices(), rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not indices_result and msg is None: assert debug_msg is not None msg = "Sparse tensor indices failed to compare as equal! " + debug_msg self.assertTrue(indices_result, msg=msg) values_result, debug_msg = self._compareTensors(x._values(), y._values(), rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not values_result and msg is None: assert debug_msg is not None msg = "Sparse tensor values failed to compare as equal! " + debug_msg self.assertTrue(values_result, msg=msg) elif x.is_quantized and y.is_quantized: self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) if x.qscheme() == torch.per_tensor_affine: self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_zero_point(), y.q_zero_point(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif x.qscheme() == torch.per_channel_affine: self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) result, debug_msg = self._compareTensors(x.int_repr().to(torch.int32), y.int_repr().to(torch.int32), atol=atol, rtol=rtol, exact_dtype=exact_dtype, exact_device=exact_device) if not result and msg is None: assert debug_msg is not None msg = "Quantized representations failed to compare as equal! " + debug_msg self.assertTrue(result, msg=msg) else: result, debug_msg = self._compareTensors(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan, exact_dtype=exact_dtype, exact_device=exact_device) if not result and msg is None: assert debug_msg is not None msg = "Tensors failed to compare as equal! " + debug_msg self.assertTrue(result, msg=msg) elif isinstance(x, string_classes) and isinstance(y, string_classes): super().assertEqual(x, y, msg=msg) elif type(x) == set and type(y) == set: super().assertEqual(x, y, msg=msg) elif isinstance(x, dict) and isinstance(y, dict): if isinstance(x, OrderedDict) and isinstance(y, OrderedDict): self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) else: self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) key_list = list(x.keys()) self.assertEqual([x[k] for k in key_list], [y[k] for k in key_list], atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(x, type) and isinstance(y, type): # See TestTorch.test_assert_equal_generic_meta super().assertEqual(x, y, msg=msg) elif is_iterable(x) and is_iterable(y): super().assertEqual(len(x), len(y), msg=msg) for x_, y_ in zip(x, y): self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device) elif isinstance(x, bool) and isinstance(y, bool): self.assertTrue(x == y, msg=msg) # Scalar x Scalar elif isinstance(x, Number) and isinstance(y, Number): result, debug_msg = self._compareScalars(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan) if not result and msg is None: assert debug_msg is not None msg = "Scalars failed to compare as equal! " + debug_msg self.assertTrue(result, msg=msg) else: super().assertEqual(x, y, msg=msg) def assertNotEqual(self, x, y, msg: Optional[str] = None, *, atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None: with self.assertRaises(AssertionError, msg=msg): self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs) def assertEqualTypeString(self, x, y) -> None: # This API is used simulate deprecated x.type() == y.type() self.assertEqual(x.device, y.device) self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.is_sparse, y.is_sparse) def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None: for elem in iterable: if id(obj) == id(elem): return raise AssertionError("object not found in iterable") # TODO: Support context manager interface # NB: The kwargs forwarding to callable robs the 'subname' parameter. # If you need it, manually apply your callable in a lambda instead. def assertExpectedRaises(self, exc_type, callable, *args, **kwargs): subname = None if 'subname' in kwargs: subname = kwargs['subname'] del kwargs['subname'] try: callable(*args, **kwargs) except exc_type as e: self.assertExpected(str(e), subname) return # Don't put this in the try block; the AssertionError will catch it self.fail(msg="Did not raise when expected to") def assertNotWarn(self, callable, msg=''): r""" Test if :attr:`callable` does not raise a warning. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised callable() self.assertTrue(len(ws) == 0, msg) @contextmanager def maybeWarnsRegex(self, category, regex=''): """Context manager for code that *may* warn, e.g. ``TORCH_WARN_ONCE``. This filters expected warnings from the test log and fails the test if any unexpected warnings are caught. """ with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always") # allow any warning to be raised # Ignore expected warnings warnings.filterwarnings("ignore", message=regex, category=category) try: yield finally: if len(ws) != 0: msg = 'Caught unexpected warnings:\n' for w in ws: msg += warnings.formatwarning( w.message, w.category, w.filename, w.lineno, w.line) msg += '\n' self.fail(msg) def assertExpected(self, s, subname=None): r""" Test that a string matches the recorded contents of a file derived from the name of this test and subname. This file is placed in the 'expect' directory in the same directory as the test script. You can automatically update the recorded test output using --accept. If you call this multiple times in a single function, you must give a unique subname each time. """ if not isinstance(s, str): raise TypeError("assertExpected is strings only") def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix):] return text # NB: we take __file__ from the module that defined the test # class, so we place the expect directory where the test script # lives, NOT where test/common_utils.py lives. This doesn't matter in # PyTorch where all test scripts are in the same directory as # test/common_utils.py, but it matters in onnx-pytorch module_id = self.__class__.__module__ munged_id = remove_prefix(self.id(), module_id + ".") test_file = os.path.realpath(sys.modules[module_id].__file__) expected_file = os.path.join(os.path.dirname(test_file), "expect", munged_id) subname_output = "" if subname: expected_file += "-" + subname subname_output = " ({})".format(subname) expected_file += ".expect" expected = None def accept_output(update_type): print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s)) with open(expected_file, 'w') as f: # Adjust for producer_version, leave s unmodified s_tag = re.sub(r'(producer_version): "[0-9.]*"', r'\1producer_version: "CURRENT_VERSION"', s) f.write(s_tag) try: with open(expected_file) as f: expected = f.read() except IOError as e: if e.errno != errno.ENOENT: raise elif expecttest.ACCEPT: return accept_output("output") else: raise RuntimeError( ("I got this output for {}{}:\n\n{}\n\n" "No expect file exists; to accept the current output, run:\n" "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None # a hack for JIT tests if IS_WINDOWS: expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected) s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s) # Adjust for producer_version expected = expected.replace( 'producer_version: "CURRENT_VERSION"', 'producer_version: "{}"'.format(torch.onnx.producer_version) ) if expecttest.ACCEPT: if expected != s: return accept_output("updated output") else: if hasattr(self, "assertMultiLineEqual"): # Python 2.7 only # NB: Python considers lhs "old" and rhs "new". self.assertMultiLineEqual(expected, s) else: self.assertEqual(s, expected) def assertExpectedStripMangled(self, s, subname=None): s = re.sub(r'__torch__[^ ]+', '', s) self.assertExpected(s, subname) # returns captured stderr @staticmethod def runWithPytorchAPIUsageStderr(code): import subprocess env = os.environ.copy() env["PYTORCH_API_USAGE_STDERR"] = "1" pipes = subprocess.Popen( [sys.executable, '-c', code], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) return pipes.communicate()[1].decode('ascii') if sys.version_info < (3, 2): # assertRegexpMatches renamed to assertRegex in 3.2 assertRegex = unittest.TestCase.assertRegexpMatches # assertRaisesRegexp renamed to assertRaisesRegex in 3.2 assertRaisesRegex = unittest.TestCase.assertRaisesRegexp if sys.version_info < (3, 5): # assertNotRegexpMatches renamed to assertNotRegex in 3.5 assertNotRegex = unittest.TestCase.assertNotRegexpMatches def download_file(url, binary=True): from urllib.parse import urlsplit from urllib import request, error filename = os.path.basename(urlsplit(url)[2]) data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data')) path = os.path.join(data_dir, filename) if os.path.exists(path): return path try: data = request.urlopen(url, timeout=15).read() with open(path, 'wb' if binary else 'w') as f: f.write(data) return path except error.URLError as e: msg = "could not download test file '{}'".format(url) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) from e def find_free_port(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(('localhost', 0)) sockname = sock.getsockname() sock.close() return sockname[1] # Errors that we can get in c10d initialization for which we should retry tests for. ADDRESS_IN_USE = "Address already in use" CONNECT_TIMEOUT = "connect() timed out." def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)): """Reruns a test if the test returns a RuntimeError and the exception matches exactly with one of the strings in connect_errors.""" # This if block is executed when using this function as a decorator with arguments. if func is None: return partial(retry_on_connect_failures, connect_errors=connect_errors) @wraps(func) def wrapper(*args, **kwargs): tries_remaining = 10 while True: try: return func(*args, **kwargs) except RuntimeError as error: if str(error) in connect_errors: tries_remaining -= 1 if tries_remaining == 0: raise time.sleep(random.random()) continue raise return wrapper # Decorator to retry upon certain Exceptions. def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False): def deco_retry(f): @wraps(f) def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as e: msg = "%s, Retrying in %d seconds..." % (str(e), mdelay) print(msg) time.sleep(mdelay) mtries -= 1 try: return f(*args, **kwargs) except ExceptionToCheck as e: raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e return f_retry # true decorator return deco_retry # Methods for matrix and tensor generation # Used in test_autograd.py and test_torch.py def make_tensor(size, device: torch.device, dtype: torch.dtype, *, low, high, requires_grad: bool = False) -> torch.Tensor: """Returns a tensor of the specified size on the given device and dtype. The tensors values are between -9 and 9, inclusive, for most dtypes, unless low (high) is not None in which case the values are between max(-9, low) and min(9, high). For unsigned types the values are between 0 and 9, and for complex dtypes the real and imaginary parts are each between -9 and 9, independently.""" assert low is None or low < 9, "low value too high!" assert high is None or high > -9, "high value too low!" if dtype is torch.bool: return torch.randint(0, 2, size, device=device, dtype=dtype) if dtype is torch.uint8: low = math.floor(0 if low is None else max(low, 0)) high = math.ceil(10 if high is None else min(high, 10)) return torch.randint(low, high, size, device=device, dtype=dtype) elif dtype in integral_types(): low = math.floor(-9 if low is None else max(low, -9)) high = math.ceil(10 if high is None else min(high, 10)) return torch.randint(low, high, size, device=device, dtype=dtype) elif dtype in floating_types_and(torch.half, torch.bfloat16): low = -9 if low is None else max(low, -9) high = 9 if high is None else min(high, 10) span = high - low # Windows doesn't support torch.rand(bfloat16) on CUDA if IS_WINDOWS and torch.device(device).type == 'cuda' and dtype is torch.bfloat16: t = (torch.rand(size, device=device, dtype=torch.float32) * span + low).to(torch.bfloat16) else: t = torch.rand(size, device=device, dtype=dtype) * span + low t.requires_grad = requires_grad return t else: assert dtype in complex_types() low = -9 if low is None else max(low, -9) high = 9 if high is None else min(high, 10) span = high - low float_dtype = torch.float if dtype is torch.cfloat else torch.double real = torch.rand(size, device=device, dtype=float_dtype) * span + low imag = torch.rand(size, device=device, dtype=float_dtype) * span + low c = torch.complex(real, imag) c.requires_grad = requires_grad return c def prod_single_zero(dim_size): result = torch.randn(dim_size, dim_size) result[0, 1] = 0 return result def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'): assert rank <= l A = torch.randn(l, l, dtype=dtype, device=device) u, s, v = A.svd() for i in range(l): if i >= rank: s[i] = 0 elif s[i] == 0: s[i] = 1 return u.mm(torch.diag(s)).mm(v.transpose(0, 1)) def random_symmetric_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) A = (A + A.transpose(-2, -1)).div_(2) return A def random_symmetric_psd_matrix(l, *batches, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1)) def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) return torch.matmul(A, A.transpose(-2, -1)) \ + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5 def make_nonzero_det(A, sign=None, min_singular_value=0.1): u, s, v = A.svd() s.clamp_(min=min_singular_value) A = torch.matmul(u, torch.matmul(torch.diag_embed(s), v.transpose(-2, -1))) det = A.det() if sign is not None: if A.dim() == 2: det = det.item() if (det < 0) ^ (sign < 0): A[0, :].neg_() else: cond = ((det < 0) ^ (sign < 0)).nonzero() if cond.size(0) > 0: for i in range(cond.size(0)): A[list(cond[i])][0, :].neg_() return A def random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_dims, **kwargs): dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) if silent and not torch._C.has_lapack: return torch.ones(matrix_size, matrix_size, dtype=dtype, device=device) A = torch.randn(batch_dims + (matrix_size, matrix_size), dtype=dtype, device=device) u, _, v = A.svd() s = torch.arange(1., matrix_size + 1, dtype=dtype, device=device).mul_(1.0 / (matrix_size + 1)).diag() return u.matmul(s.expand(batch_dims + (matrix_size, matrix_size)).matmul(v.transpose(-2, -1))) def random_matrix(rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices. Parameters: dtype - the data type device - the device kind singular - when True, the output will be singular """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') silent = kwargs.get("silent", False) singular = kwargs.get("singular", False) if silent and not torch._C.has_lapack: return torch.ones(rows, columns, dtype=dtype, device=device) A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device) u, _, v = A.svd(some=False) s = torch.zeros(rows, columns, dtype=dtype, device=device) k = min(rows, columns) for i in range(k): s[i, i] = float(i + 1) / (k + 1) if singular: # make matrix singular s[k - 1, k - 1] = 0 if k > 2: # increase the order of singularity so that the pivoting # in LU factorization will be non-trivial s[0, 0] = 0 return u.matmul(s.expand(batch_dims + (rows, columns)).matmul(v.transpose(-2, -1))) def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs): """Return rectangular matrix or batches of rectangular matrices with given rank. """ B = random_matrix(rows, rank, *batch_dims, **kwargs) C = random_matrix(rank, columns, *batch_dims, **kwargs) return B.matmul(C) def random_sparse_matrix(rows, columns, density=0.01, **kwargs): """Return rectangular random sparse matrix within given density. The density of the result approaches to given density as the size of the matrix is increased and a relatively small value of density is specified but higher than min(rows, columns)/(rows * columns) for non-singular matrices. """ dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') singular = kwargs.get("singular", False) k = min(rows, columns) nonzero_elements = max(min(rows, columns), int(rows * columns * density)) row_indices = [i % rows for i in range(nonzero_elements)] column_indices = [i % columns for i in range(nonzero_elements)] random.shuffle(column_indices) indices = [row_indices, column_indices] values = torch.randn(nonzero_elements, dtype=dtype, device=device) # ensure that the diagonal dominates values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp() A = torch.sparse_coo_tensor(indices, values, (rows, columns), device=device) return A.coalesce() def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs): """Return random sparse positive-definite matrix with given density. The eigenvalues of the matrix are defined as:: arange(1, matrix_size+1)/matrix_size Algorithm: A = diag(arange(1, matrix_size+1)/matrix_size) while : R = A = R^T A R """ import math torch = kwargs.get('torch', globals()['torch']) dtype = kwargs.get('dtype', torch.double) device = kwargs.get('device', 'cpu') data = dict([((i, i), float(i + 1) / matrix_size) for i in range(matrix_size)]) def multiply(data, N, i, j, cs, sn, left=True): for k in range(N): if left: ik, jk = (k, i), (k, j) else: ik, jk = (i, k), (j, k) aik, ajk = data.get(ik, 0), data.get(jk, 0) aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk if aik: data[ik] = aik else: data.pop(ik, None) if ajk: data[jk] = ajk else: data.pop(jk, None) target_nnz = density * matrix_size * matrix_size while len(data) < target_nnz: i = random.randint(0, matrix_size - 1) j = random.randint(0, matrix_size - 1) if i != j: theta = random.uniform(0, 2 * math.pi) cs = math.cos(theta) sn = math.sin(theta) multiply(data, matrix_size, i, j, cs, sn, left=True) multiply(data, matrix_size, i, j, cs, sn, left=False) icoords, jcoords, values = [], [], [] for (i, j), v in sorted(data.items()): icoords.append(i) jcoords.append(j) values.append(v) indices = [icoords, jcoords] return torch.sparse_coo_tensor(indices, values, (matrix_size, matrix_size), dtype=dtype, device=device) def do_test_dtypes(self, dtypes, layout, device): for dtype in dtypes: if dtype != torch.float16: out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) self.assertIs(dtype, out.dtype) self.assertIs(layout, out.layout) self.assertEqual(device, out.device) def do_test_empty_full(self, dtypes, layout, device): shape = torch.Size([2, 3]) def check_value(tensor, dtype, layout, device, value, requires_grad): self.assertEqual(shape, tensor.shape) self.assertIs(dtype, tensor.dtype) self.assertIs(layout, tensor.layout) self.assertEqual(tensor.requires_grad, requires_grad) if tensor.is_cuda and device is not None: self.assertEqual(device, tensor.device) if value is not None: fill = tensor.new(shape).fill_(value) self.assertEqual(tensor, fill) def get_int64_dtype(dtype): module = '.'.join(str(dtype).split('.')[1:-1]) if not module: return torch.int64 return operator.attrgetter(module)(torch).int64 default_dtype = torch.get_default_dtype() check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False) for dtype in dtypes: for rg in {dtype.is_floating_point, False}: int64_dtype = get_int64_dtype(dtype) v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) check_value(v, dtype, layout, device, None, rg) out = v.new() check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, None, rg) check_value(v.new_empty(shape), dtype, layout, device, None, False) check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, None, False) check_value(torch.empty_like(v), dtype, layout, device, None, False) check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, None, False) if dtype is not torch.float16 and layout != torch.sparse_coo: fv = 3 v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) check_value(v, dtype, layout, device, fv, rg) check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) out = v.new() check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), dtype, layout, device, fv + 2, rg) check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), int64_dtype, layout, device, fv + 3, False) check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) check_value(torch.full_like(v, fv + 5, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), int64_dtype, layout, device, fv + 5, False) THESE_TAKE_WAY_TOO_LONG = { 'test_Conv3d_groups', 'test_conv_double_backward', 'test_conv_double_backward_groups', 'test_Conv3d_dilated', 'test_Conv3d_stride_padding', 'test_Conv3d_dilated_strided', 'test_Conv3d', 'test_Conv2d_dilated', 'test_ConvTranspose3d_dilated', 'test_ConvTranspose2d_dilated', 'test_snli', 'test_Conv2d', 'test_Conv2d_padding', 'test_ConvTranspose2d_no_bias', 'test_ConvTranspose2d', 'test_ConvTranspose3d', 'test_Conv2d_no_bias', 'test_matmul_4d_4d', 'test_multinomial_invalid_probs', } running_script_path = None def set_running_script_path(): global running_script_path try: running_file = os.path.abspath(os.path.realpath(sys.argv[0])) if running_file.endswith('.py'): # skip if the running file is not a script running_script_path = running_file except Exception: pass def check_test_defined_in_running_script(test_case): if running_script_path is None: return test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__))) assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \ "is not defined in the running script \"{}\", but in \"{}\". Did you " \ "accidentally import a unittest.TestCase from another file?".format( test_case.id(), running_script_path, test_case_class_file) def load_tests(loader, tests, pattern): set_running_script_path() test_suite = unittest.TestSuite() for test_group in tests: for test in test_group: check_test_defined_in_running_script(test) test_suite.addTest(test) return test_suite class BytesIOContext(io.BytesIO): def __enter__(self): return self def __exit__(self, *args): pass def _assertGradAndGradgradChecks(test_case, apply_fn, inputs): # call assert function rather than returning a bool since it's nicer # if we get whether this failed on the gradcheck or the gradgradcheck. test_case.assertTrue(gradcheck(apply_fn, inputs)) test_case.assertTrue(gradgradcheck(apply_fn, inputs)) # Using @precisionOverride specific to your test is the recommended way # of doing this. These are just some values that worked for test_nn. dtype2prec_DONTUSE = {torch.float: 1e-5, torch.double: 1e-5, torch.half: 1e-2, torch.bfloat16: 1e-1}