# mypy: ignore-errors """ This module contains variable classes for handling user-defined objects in Dynamo's tracing system. The key classes are: - UserDefinedVariable: Base class for representing custom Python objects - UserDefinedClassVariable: Handles Python class objects/types - UserDefinedObjectVariable: Fallback class for instance objects, with support for method calls, attribute access, and other Python object behaviors. - Specialized subclasses for common patterns: - UserDefinedDictVariable: For dict subclasses - UserDefinedTupleVariable: For tuple subclasses - FrozenDataClassVariable: Special handling of frozen dataclasses - MutableMappingVariable: For collections.abc.MutableMapping subclasses Dynamo specializes to VariableTracker subclasses like FrozenDataClassVariable if available; if no subclass qualifies, it falls back to UserDefinedObjectVariable. These classes help Dynamo track and handle arbitrary Python objects during tracing, maintaining proper semantics while enabling optimizations where possible. """ import _collections import builtins import collections import contextlib import dataclasses import enum import functools import inspect import random import sys import threading import types import warnings import weakref from typing import TYPE_CHECKING from typing_extensions import is_typeddict import torch._dynamo.config import torch.nn from torch._guards import TracingContext from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type from .. import polyfills, variables from ..bytecode_transformation import create_call_function from ..create_parameter_op import do_not_convert_to_tracable_parameter from ..exc import ( handle_observed_exception, ObservedAttributeError, raise_observed_exception, unimplemented, ) from ..guards import GuardBuilder, install_guard from ..source import ( AttrSource, CallFunctionNoArgsSource, GetItemSource, RandomValueSource, TypeSource, UnspecializedParamBufferSource, ) from ..utils import ( build_checkpoint_variable, check_constant_args, cmp_name_to_op_mapping, dict_methods, get_custom_getattr, has_torch_function, is_frozen_dataclass, is_namedtuple_cls, is_utils_checkpoint, is_wrapper_or_member_descriptor, istype, list_methods, namedtuple_fields, object_has_getattribute, proxy_args_kwargs, tensortype_to_dtype, tuple_methods, unpatched_nn_module_getattr, ) from .base import AttributeMutationExisting, ValueMutationNew, VariableTracker from .dicts import DefaultDictVariable from .lists import SizeVariable try: import numpy as np except ModuleNotFoundError: np = None try: from torch.utils._cxx_pytree import PyTreeSpec except ImportError: PyTreeSpec = type(None) if TYPE_CHECKING: from torch._dynamo.codegen import PyCodegen from torch._dynamo.symbolic_convert import InstructionTranslator def is_standard_setattr(val): return val in (object.__setattr__, BaseException.__setattr__) def is_standard_delattr(val): return val in (object.__delattr__, BaseException.__delattr__) def is_forbidden_context_manager(ctx): f_ctxs = [] try: from _pytest.python_api import RaisesContext from _pytest.recwarn import WarningsChecker f_ctxs.append(RaisesContext) f_ctxs.append(WarningsChecker) except ImportError: pass if m := sys.modules.get("torch.testing._internal.jit_utils"): f_ctxs.append(m._AssertRaisesRegexWithHighlightContext) return ctx in f_ctxs class UserDefinedVariable(VariableTracker): value: object class UserDefinedClassVariable(UserDefinedVariable): value: type[object] def __init__(self, value, **kwargs) -> None: super().__init__(**kwargs) self.value = value def as_python_constant(self): return self.value def as_proxy(self): return self.value def __repr__(self) -> str: return f"{self.__class__.__name__}({self.value})" @staticmethod @functools.cache def _constant_fold_classes(): return { torch.device, torch.finfo, torch.iinfo, torch.Size, } @staticmethod @functools.cache def _in_graph_classes(): _in_graph_class_list = { torch.Tensor, torch.cuda.FloatTensor, torch.cuda.DoubleTensor, torch.cuda.HalfTensor, torch.cuda.BFloat16Tensor, torch.cuda.ByteTensor, torch.cuda.CharTensor, torch.cuda.IntTensor, torch.cuda.ShortTensor, torch.cuda.LongTensor, torch.Stream, torch.Event, torch.cuda.Stream, torch.cuda.Event, torch.xpu.Stream, torch.xpu.Event, } if hasattr(torch, "hpu"): _in_graph_class_list.update( { torch.hpu.Stream, torch.hpu.Event, } ) return set(tensortype_to_dtype.keys()) | _in_graph_class_list @staticmethod @functools.cache def supported_c_new_functions(): exceptions = [ getattr(builtins, name).__new__ for name in dir(builtins) if isinstance(getattr(builtins, name), type) and issubclass(getattr(builtins, name), BaseException) ] return { object.__new__, dict.__new__, tuple.__new__, list.__new__, }.union(exceptions) @staticmethod def is_supported_new_method(value): # TODO(anijain2305) - Extend this to support objects with default tp_new # functions. return value in UserDefinedClassVariable.supported_c_new_functions() def can_constant_fold_through(self): return self.value in self._constant_fold_classes() def has_key_in_generic_dict(self, tx: "InstructionTranslator", key): if tx.output.side_effects.has_pending_mutation_of_attr(self, key): mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True) return not isinstance(mutated_attr, variables.DeletedVariable) return key in self.value.__dict__ def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker": from . import ConstantVariable, EnumVariable source = AttrSource(self.source, name) if self.source is not None else None if name == "__name__": return ConstantVariable.create(self.value.__name__) elif name == "__qualname__": return ConstantVariable.create(self.value.__qualname__) elif name == "__dict__": options = {"source": source} return variables.GetAttrVariable(self, name, **options) # Special handling of collections.OrderedDict.fromkeys() # Wrap it as GetAttrVariable(collections.OrderedDict, "fromkeys") to make it consistent with # collections.defaultdict, and both will be handled at UserDefinedClassVariable.call_method(). # Otherwise, it would be wrapped as UserDefinedObjectVariable(collections.OrderedDict.fromkeys), # and we need duplicate code to handle both cases. if ( self.value in {collections.OrderedDict, collections.defaultdict} and name == "fromkeys" ): return super().var_getattr(tx, name) try: obj = inspect.getattr_static(self.value, name) except AttributeError: if type(self.value) is type: raise_observed_exception(AttributeError, tx) else: # Cannot reason about classes with a custom metaclass # See: test_functions::test_getattr_metaclass obj = None if name == "__new__" and UserDefinedClassVariable.is_supported_new_method(obj): return super().var_getattr(tx, name) if name in cmp_name_to_op_mapping and not isinstance(obj, types.FunctionType): return variables.GetAttrVariable(self, name, source=source) if isinstance(obj, staticmethod): return VariableTracker.build(tx, obj.__get__(self.value), source) elif isinstance(obj, classmethod): if isinstance(obj.__func__, property): return variables.UserFunctionVariable(obj.__func__.fget).call_function( tx, [self], {} ) return variables.UserMethodVariable(obj.__func__, self, source=source) elif isinstance(obj, types.ClassMethodDescriptorType): # e.g.: inspect.getattr_static(dict, "fromkeys") # inspect.getattr_static(itertools.chain, "from_iterable") func = obj.__get__(None, self.value) return VariableTracker.build(tx, func, source) elif source: # __mro__ is a member in < 3.12, an attribute in >= 3.12 if inspect.ismemberdescriptor(obj) or ( sys.version_info >= (3, 12) and name == "__mro__" ): return VariableTracker.build(tx, obj.__get__(self.value), source) if ConstantVariable.is_literal(obj): return ConstantVariable.create(obj) elif isinstance(obj, enum.Enum): return EnumVariable(obj) elif name in getattr(self.value, "__dict__", {}) or ( self.value.__module__.startswith("torch.") or self.value.__module__ == "torch" ): if source: return VariableTracker.build(tx, obj, source) if ( source and not inspect.ismethoddescriptor(obj) and not is_wrapper_or_member_descriptor(obj) ): return VariableTracker.build(tx, obj, source) return super().var_getattr(tx, name) def _call_cross_entropy_loss(self, tx: "InstructionTranslator", args, kwargs): """ functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0 non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0 non functional loss call: input, target, optional_output """ from . import ConstantVariable def normalize_args( weight=ConstantVariable.create(None), size_average=ConstantVariable.create(None), ignore_index=ConstantVariable.create(-100), reduce=ConstantVariable.create(None), reduction=ConstantVariable.create("mean"), label_smoothing=ConstantVariable.create(0.0), ): return ( weight, size_average, ignore_index, reduce, reduction, label_smoothing, ) ( weight, size_average, ignore_index, reduce_arg, reduction, label_smoothing, ) = normalize_args(*args, **kwargs) def fake_cross_entropy_loss(input, target): from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", torch.nn.functional.cross_entropy, *proxy_args_kwargs( [ input, target, weight, size_average, ignore_index, reduce_arg, reduction, label_smoothing, ], {}, ), ), ) return variables.LambdaVariable(fake_cross_entropy_loss) def call_method( self, tx, name, args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": if ( name == "__subclasses__" and len(args) == 0 and not kwargs and "__subclasses__" not in self.value.__dict__ ): source = self.source if self.source: source = AttrSource(self.source, "__subclasses__") source = CallFunctionNoArgsSource(source) return VariableTracker.build(tx, self.value.__subclasses__(), source) elif ( self.value in {collections.OrderedDict, collections.defaultdict} and name == "fromkeys" ): from .builtin import BuiltinVariable return BuiltinVariable.call_custom_dict_fromkeys( tx, self.value, *args, **kwargs ) elif name == "__eq__" and len(args) == 1 and hasattr(args[0], "value"): return variables.ConstantVariable(self.value == args[0].value) elif name == "__ne__" and len(args) == 1 and hasattr(args[0], "value"): return variables.ConstantVariable(self.value != args[0].value) elif ( name == "__new__" and self.value is collections.OrderedDict and isinstance(args[0], UserDefinedClassVariable) and args[0].value is collections.OrderedDict ): assert len(args) == 1 assert len(kwargs) == 0 return variables.ConstDictVariable( {}, collections.OrderedDict, mutation_type=ValueMutationNew() ) elif name == "__new__" and UserDefinedClassVariable.is_supported_new_method( self.value.__new__ ): return tx.output.side_effects.track_new_user_defined_object( self, args[0], args[1:], ) return super().call_method(tx, name, args, kwargs) def call_function( self, tx: "InstructionTranslator", args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": from ..side_effects import SideEffects from .builder import wrap_fx_proxy constant_args = check_constant_args(args, kwargs) if self.can_constant_fold_through() and constant_args: # constant fold return variables.ConstantVariable.create( self.as_python_constant()( *[x.as_python_constant() for x in args], **{k: v.as_python_constant() for k, v in kwargs.items()}, ), ) elif self.value is torch.nn.CrossEntropyLoss: return self._call_cross_entropy_loss(tx, args, kwargs) elif self.value is contextlib.nullcontext: # import here to avoid circular dependency from .ctx_manager import NullContextVariable return NullContextVariable() elif self.value is collections.OrderedDict: return tx.inline_user_function_return( VariableTracker.build(tx, polyfills.construct_dict), [self, *args], kwargs, ) elif ( self.value is collections.defaultdict and len(args) <= 1 and DefaultDictVariable.is_supported_arg(args[0]) ): return DefaultDictVariable( {}, collections.defaultdict, args[0], mutation_type=ValueMutationNew(), ) elif is_typeddict(self.value): if self.value.__optional_keys__: unimplemented("TypedDict with optional keys not supported") return variables.BuiltinVariable(dict).call_dict(tx, *args, **kwargs) elif self.value is collections.deque: maxlen = variables.ConstantVariable.create(None) if not kwargs: if len(args) == 0: items = [] elif len(args) == 1 and args[0].has_force_unpack_var_sequence(tx): items = args[0].force_unpack_var_sequence(tx) elif len(args) == 2 and args[0].has_force_unpack_var_sequence(tx): items = args[0].force_unpack_var_sequence(tx) maxlen = args[1] else: unimplemented("deque() with more than 2 arg not supported") elif tuple(kwargs) == ("maxlen",): maxlen = kwargs["maxlen"] if len(args) == 0: items = [] if len(args) == 1 and args[0].has_force_unpack_var_sequence(tx): items = args[0].force_unpack_var_sequence(tx) else: unimplemented("deque() with more than 1 arg not supported") else: unimplemented("deque() with invalid kwargs not supported") return variables.lists.DequeVariable( items, maxlen=maxlen, mutation_type=ValueMutationNew() ) elif self.value is weakref.ref: if len(args) > 1: callback = args[1] else: callback = variables.ConstantVariable.create(None) return variables.WeakRefVariable(args[0], callback) elif self.value is functools.partial: if not args: unimplemented("functools.partial malformed") # The first arg, a callable (the ctor below will assert on types) fn = args[0] rest_args = args[1:] # guards for the produced FunctoolsPartialVariable are installed in FunctoolsPartialVariable ctor from the # args and keywords return variables.functions.FunctoolsPartialVariable( fn, args=rest_args, keywords=kwargs ) elif self.value is warnings.catch_warnings and not args: return variables.CatchWarningsCtxManagerVariable.create(tx, kwargs) elif self.value is torch.cuda.device and not kwargs and len(args) == 1: assert args[0].is_python_constant() return variables.CUDADeviceVariable.create(tx, args[0].as_python_constant()) elif ( issubclass(type(self.value), type) and hasattr( self.value, "__enter__" ) # TODO(voz): These can invoke user code! and hasattr( self.value, "__exit__" ) # TODO(voz): These can invoke user code! and self.is_standard_new() and SideEffects.cls_supports_mutation_side_effects(self.value) and self.source and not is_forbidden_context_manager(self.value) ): from .functions import ( BaseUserFunctionVariable, FunctionDecoratedByContextlibContextManagerVariable, ) # graph break on any contextlib.* that it is not contextlib.contextmanager # Some of the APIs below are not supported because they rely on features # that Dynamo doesn't play well today (i.e. contextlib.suppress) if self.value in ( contextlib._AsyncGeneratorContextManager, contextlib.closing, contextlib.redirect_stdout, contextlib.redirect_stderr, contextlib.suppress, contextlib.ExitStack, contextlib.AsyncExitStack, ): # We are not changing the behavior of Dynamo as these function were # already ignored on trace_rules.py before #136033 landed unimplemented( f"{self.value} not supported. This may be due to its use of " "context-specific operations that are not supported in " "Dynamo yet (i.e. Exception handling)" ) if self.value is contextlib._GeneratorContextManager and isinstance( args[0], BaseUserFunctionVariable ): if not torch._dynamo.config.enable_trace_contextlib: unimplemented("contextlib.contextmanager") # Wrap UserFunctionVariable in FunctionDecoratedByContextlibContextManagerVariable # if the function is annotated with @contextlib.contextmanager # This shouldn't be necessary once generator functions are fully # supported in dynamo args = [ FunctionDecoratedByContextlibContextManagerVariable( args[0], source=args[0].source ) ] + args[1:] cm_obj = tx.output.side_effects.track_new_user_defined_object( variables.BuiltinVariable(object), self, args, ) cm_obj.call_method(tx, "__init__", args, kwargs) return cm_obj elif is_namedtuple_cls(self.value): fields = namedtuple_fields(self.value) # check if this a quasi-namedtuple or a real one if self.value.__module__ == "torch.return_types": assert len(args) == 1 assert not kwargs items = args[0].force_unpack_var_sequence(tx) else: field_defaults = self.value._field_defaults items = list(args) items.extend([None] * (len(fields) - len(items))) var_tracker_kwargs = {} for field_name, var_tracker in zip(fields, items): if var_tracker is None: if field_name in kwargs: field_var = kwargs[field_name] else: assert field_name in field_defaults field_var = VariableTracker.build( tx, field_defaults[field_name] ) var_tracker_kwargs[field_name] = field_var for name, value in var_tracker_kwargs.items(): assert name in fields items[fields.index(name)] = value assert all(x is not None for x in items) return variables.NamedTupleVariable(items, self.value) elif self.value is torch.Size: # This simulates `THPSize_pynew`, the C impl for `Size.__new__`. tup = variables.BuiltinVariable(tuple).call_function(tx, args, kwargs) return SizeVariable(tup.items) elif is_frozen_dataclass(self.value) and self.is_standard_new(): fields = dataclasses.fields(self.value) items = list(args) items.extend([None] * (len(fields) - len(items))) default_kwargs = {} for field, var_tracker in zip(fields, items): if var_tracker is None: if field.name in kwargs: var_tracker = kwargs[field.name] else: if not field.init: continue if field.default is not dataclasses.MISSING: var_tracker = VariableTracker.build(tx, field.default) elif field.default_factory is not dataclasses.MISSING: factory_fn = VariableTracker.build( tx, field.default_factory ) var_tracker = factory_fn.call_function(tx, [], {}) else: # if we are subclass, the constructor could possibly # be missing args continue default_kwargs[field.name] = var_tracker kwargs.update(default_kwargs) var = tx.output.side_effects.track_new_user_defined_object( variables.BuiltinVariable(object), self, args ) var.call_method(tx, "__init__", args, kwargs) return var elif ( self.value in self._in_graph_classes() or is_traceable_wrapper_subclass_type(self.value) ): # torch.LongTensor cannot accept a list of FakeTensors. # So we stack the list of FakeTensors instead. if ( np and self.value in tensortype_to_dtype and len(args) == 1 and isinstance(args[0], variables.ListVariable) and len(args[0].items) > 1 and all(isinstance(x, variables.TensorVariable) for x in args[0].items) ): # Stack FakeTensor stacked = wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", torch.stack, *proxy_args_kwargs(args, kwargs), ), ) args = [stacked] tensor_variable = wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", self.value, *proxy_args_kwargs(args, kwargs), ), ) return tensor_variable elif self.value is random.Random: if len(args) == 1 and isinstance(args[0], variables.ConstantVariable): seed = args[0].value else: seed = None random_object = random.Random(seed) return RandomVariable(random_object) elif ( self.value is types.MappingProxyType and len(args) == 1 and isinstance(args[0], variables.ConstDictVariable) ): # types.MappingProxyType is a read-only proxy of the dict. If the # original dict changes, the changes are reflected in proxy as well. return variables.MappingProxyVariable(args[0]) elif SideEffects.cls_supports_mutation_side_effects(self.value) and self.source: with do_not_convert_to_tracable_parameter(): return tx.inline_user_function_return( VariableTracker.build( tx, polyfills.instantiate_user_defined_class_object ), [self, *args], kwargs, ) return super().call_function(tx, args, kwargs) def is_standard_new(self): """Check for __new__ being overridden""" new_fn = inspect.getattr_static(self.value, "__new__", None) if isinstance(new_fn, staticmethod): new_fn = new_fn.__func__ return new_fn is object.__new__ def call_obj_hasattr( self, tx: "InstructionTranslator", name: str ) -> "VariableTracker": if self.source: source = AttrSource(self.source, name) install_guard(source.make_guard(GuardBuilder.HASATTR)) return variables.ConstantVariable(hasattr(self.value, name)) return super().call_obj_hasattr(tx, name) def const_getattr(self, tx: "InstructionTranslator", name): if name == "__name__": return self.value.__name__ return super().const_getattr(tx, name) class UserDefinedExceptionClassVariable(UserDefinedClassVariable): @property def fn(self): return self.value def python_type(self): return self.value class NO_SUCH_SUBOBJ: pass def call_random_fn(tx, fn, args, kwargs): from .builder import VariableBuilder args = [x.as_python_constant() for x in args] kwargs = {k: v.as_python_constant() for k, v in kwargs.items()} random_call_index = len(tx.output.random_calls) example_value = fn(*args, **kwargs) source = RandomValueSource(random_call_index) tx.output.random_calls.append((fn, args, kwargs)) # TODO: arguably, this should route to wrap_symint/wrap_symfloat # (currently hypothetical), but I'm not going to poke my hand in # this nest for now return VariableBuilder(tx, source).wrap_unspecialized_primitive(example_value) class UserDefinedObjectVariable(UserDefinedVariable): """ Mostly objects of defined type. Catch-all for something where we only know the type. """ _nonvar_fields = { "value", "value_type", "attrs_directly_modifed_on_dict", *UserDefinedVariable._nonvar_fields, } def __init__( self, value, *, value_type=None, cls_source=None, base_cls_vt=None, init_args=None, **kwargs, ) -> None: super().__init__(**kwargs) self.value = value self.value_type = value_type or type(value) assert type(value) is self.value_type # This is used with __new__, when the new object is sourceless but the user class can be sourceful. self.cls_source = cls_source if cls_source is None and self.source is not None: self.cls_source = TypeSource(self.source) # These attributes are used to reconstruct the user defined object. The # pseudo code looks like this. Builtin C __new__ do not support kwargs, # so init_args is sufficient. # obj = base_cls.__new__(user_cls, *args) self.base_cls_vt = base_cls_vt self.init_args = init_args # This records names of the attributes that were modifed via instance # `__dict__` directly, rather than the normal setattr path. # # TODO consider emulating `obj.__dict__` as a `ConstDictVariable` to get # rid of these workarounds here and in `GetAttrVariable`. self.attrs_directly_modifed_on_dict = set() def __str__(self) -> str: inner = self.value_type.__name__ if inner in [ "builtin_function_or_method", "getset_descriptor", "method_descriptor", "method", ]: inner = str(getattr(self.value, "__name__", None)) return f"{self.__class__.__name__}({inner})" def __repr__(self) -> str: return f"{self.__class__.__name__}({self.value_type.__name__})" def is_underlying_vt_modified(self, side_effects): return False def python_type(self): return self.value_type def as_python_constant(self): import torch.utils._pytree as pytree if pytree.is_constant_class(self.value_type): if self.source is not None: install_guard(self.source.make_guard(GuardBuilder.EQUALS_MATCH)) return self.value # TODO else try reconstructing the object by, e.g., leveraging side # effects and `as_python_constant`. return super().as_python_constant() def guard_as_python_constant(self): if self.source: install_guard(self.source.make_guard(GuardBuilder.ID_MATCH)) return self.value return super().guard_as_python_constant() def torch_function_check(self): assert has_torch_function(self), ( f"calling torch function on object without __torch_function__ {self}" ) def get_torch_fn(self, tx): self.torch_function_check() from .torch_function import get_torch_function_fn return get_torch_function_fn(tx, self) def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs): self.torch_function_check() from .torch_function import call_torch_function return call_torch_function( tx, self.get_torch_fn(tx), fn, types, args, kwargs, ) @staticmethod @functools.cache def _supported_random_functions(): fns = { random.random, random.randint, random.randrange, random.uniform, } return fns def _maybe_get_baseclass_method(self, name): if name not in getattr(self.value, "__dict__", {}): try: return inspect.getattr_static(type(self.value), name) except AttributeError: pass return None def call_method( self, tx, name, args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": from . import ConstantVariable, UserMethodVariable method = self._maybe_get_baseclass_method(name) if method is not None: if method is object.__init__: return ConstantVariable.create(None) if is_standard_setattr(method) or isinstance(self.value, threading.local): return self.method_setattr_standard(tx, *args, **kwargs) if is_standard_delattr(method): return self.method_setattr_standard( tx, args[0], variables.DeletedVariable() ) if method is object.__eq__ and len(args) == 1 and not kwargs: other = args[0] if not isinstance(other, UserDefinedObjectVariable): return variables.ConstantVariable.create(NotImplemented) # TODO(anijain2305) - Identity checking should already be a part # of the cmp_eq polyfill function. return ConstantVariable.create(self.value is other.value) if torch._dynamo.config.enable_faithful_generator_behavior and isinstance( self.value, types.GeneratorType ): unimplemented("Generator as graph argument is not supported") # check for methods implemented in C++ if isinstance(method, types.FunctionType): source = ( None if self.source is None else AttrSource(AttrSource(self.source, "__class__"), name) ) # TODO(jansel): add a guard to check for monkey patching? from ..mutation_guard import unpatched_nn_module_init if method is torch.nn.Module.__init__: method = unpatched_nn_module_init return UserMethodVariable(method, self, source=source).call_function( tx, args, kwargs ) if method is list.__len__ and self.source and not (args or kwargs): install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH)) return ConstantVariable(len(self.value)) return super().call_method(tx, name, args, kwargs) def method_setattr_standard( self, tx: "InstructionTranslator", name, value, directly_update_dict=False ): try: name = name.as_python_constant() except NotImplementedError: unimplemented(f"non-const setattr name: {name}") if not tx.output.side_effects.is_attribute_mutation(self): unimplemented(f"setattr({self}, {name}, ...)") if directly_update_dict: self.attrs_directly_modifed_on_dict.add(name) else: tmp = self.try_get_descritor_and_setter_py_func(name) if tmp: descriptor, setter = tmp # Emulate # https://github.com/python/cpython/blob/3.11/Objects/object.c#L1371-L1452 desc_source = None func_source = None if self.cls_source: desc_source = self.get_source_by_walking_mro(name) # use `type(...)` to ignore instance attrs. func_source = AttrSource(TypeSource(desc_source), "__set__") desc_var = VariableTracker.build(tx, descriptor, desc_source) func_var = VariableTracker.build(tx, setter, func_source) args = [desc_var, self, value] return func_var.call_function(tx, args, {}) # NOTE: else we assume the descriptor (if any) has a # side-effect-free `__set__` as far as Dynamo tracing is concerned. # Emulate the standard setattr on instance dict. tx.output.side_effects.store_attr(self, name, value) return variables.ConstantVariable(None) def needs_slow_setattr(self): return not is_standard_setattr( inspect.getattr_static(self.value, "__setattr__", None) ) and not isinstance(self.value, threading.local) def unpack_var_sequence(self, tx): if ( self.source and self._maybe_get_baseclass_method("__iter__") is list.__iter__ and self._maybe_get_baseclass_method("__len__") is list.__len__ and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__ ): install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH)) return [ variables.LazyVariableTracker.create( self.value[k], source=GetItemSource(self.source, k), ) for k in range(len(self.value)) ] return super().unpack_var_sequence(tx) def next_variable(self, tx): return self.call_method(tx, "__next__", [], {}) def is_supported_random(self): try: return self.value in self._supported_random_functions() except TypeError: # TypeError: unhashable type return False def call_function( self, tx: "InstructionTranslator", args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": if ( self.is_supported_random() and all(k.is_python_constant() for k in args) and all(v.is_python_constant() for v in kwargs.values()) ): return call_random_fn(tx, self.value, args, kwargs) elif istype(self.value, types.MethodType): func = self.value.__func__ obj = self.value.__self__ if ( func is torch.utils._contextlib._DecoratorContextManager.clone and variables.TorchCtxManagerClassVariable.is_matching_cls( obj.__class__ ) and not (args or kwargs) ): return variables.TorchCtxManagerClassVariable( obj.__class__ ).call_function(tx, args, kwargs) if ( func is torch.autograd.grad_mode.inference_mode.clone and obj.__class__ is torch.autograd.grad_mode.inference_mode ): # simulate the inference_mode.clone implementation var = variables.ConstantVariable(obj.mode) return variables.TorchCtxManagerClassVariable( obj.__class__ ).call_function(tx, [var], kwargs) if self.source is None: unimplemented( "Sourceless UserDefinedObjectVariable method not supported" ) func_src = AttrSource(self.source, "__func__") func_var = VariableTracker.build(tx, func, func_src) obj_src = AttrSource(self.source, "__self__") obj_var = VariableTracker.build(tx, obj, obj_src) return func_var.call_function(tx, [obj_var] + args, kwargs) elif callable(self.value): if self.source: source = AttrSource(self.cls_source, "__call__") install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH)) return self.call_method(tx, "__call__", args, kwargs) return super().call_function(tx, args, kwargs) def _check_for_getattr(self): return get_custom_getattr(self.value) def _is_c_defined_property(self, subobj): if not isinstance(subobj, property): return False # pybind def_readwrite is implemented via PyCFunction. At the python level, it is visible as a property whose # fget is an instancemethod wrapper - https://docs.python.org/3/c-api/method.html#c.PyInstanceMethod_Check # If we have a PyCFunction, we make an assumption that there is no side effect. return isinstance( subobj.fget, types.BuiltinFunctionType ) or torch._C._dynamo.utils.is_instancemethod(subobj.fget) def _getattr_static(self, name): subobj = inspect.getattr_static(self.value, name, NO_SUCH_SUBOBJ) # In some cases, we have to do dynamic lookup because getattr_static is not enough. For example, threading.local # has side-effect free __getattribute__ and the attribute is not visible without a dynamic lookup. # NOTE we assume the following descriptors are side-effect-free as far # as Dynamo tracing is concerned. if not object_has_getattribute(self.value) and ( subobj is NO_SUCH_SUBOBJ # e.g., threading.local or inspect.ismemberdescriptor(subobj) # e.g., __slots__ or inspect.isgetsetdescriptor(subobj) # e.g., __dict__ or self._is_c_defined_property(subobj) ): # Call __getattribute__, we have already checked that this is not overridden and side-effect free. We don't # want to call getattr because it can be user-overridden. subobj = type(self.value).__getattribute__(self.value, name) elif object_has_getattribute(self.value) and subobj is NO_SUCH_SUBOBJ: # If the object has an overridden getattribute method, Dynamo has # already tried tracing it, and encountered an AttributeError. We # call getattr_static only when the __getattribute__ tracing fails # (check var_getattr impl). So, it is safe here to raise the # AttributeError. raise AttributeError return subobj def should_skip_descriptor_setter(self, attr_name): # Check if `attr_name` corresponds to a descriptor. descriptor = inspect.getattr_static(type(self.value), attr_name, None) setter = inspect.getattr_static(type(descriptor), "__set__", None) if setter: # Skip if `__set__` was traceable (no need to redo the side effect). if inspect.isfunction(setter): return True # For untraceable `__set__` we should still skip if the attribute # was mutated via instance `__dict__`. elif attr_name in self.attrs_directly_modifed_on_dict: return True return False def try_get_descritor_and_setter_py_func(self, attr_name): descriptor = inspect.getattr_static(type(self.value), attr_name, None) setter = inspect.getattr_static(type(descriptor), "__set__", None) if inspect.isfunction(setter): return (descriptor, setter) return None def has_key_in_generic_dict(self, tx: "InstructionTranslator", key): if tx.output.side_effects.has_pending_mutation_of_attr(self, key): mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True) return not isinstance(mutated_attr, variables.DeletedVariable) return key in self.value.__dict__ def get_source_by_walking_mro(self, name): assert self.cls_source is not None for idx, klass in enumerate(type(self.value).__mro__): if name in klass.__dict__: mro_source = AttrSource(self.cls_source, "__mro__") klass_source = GetItemSource(mro_source, idx) dict_source = AttrSource(klass_source, "__dict__") # TODO(anijain2305) - This is a mapping proxy object. Ideally we # should use DictGetItemSource here. return GetItemSource(dict_source, name) unimplemented(f"Could not find {name} in {type(self.value).__mro__}") def var_getattr(self, tx: "InstructionTranslator", name): from .. import trace_rules from . import ConstantVariable source = AttrSource(self.source, name) if self.source else None if object_has_getattribute(self.value): getattribute_fn = inspect.getattr_static( type(self.value), "__getattribute__" ) if self.source: new_source = AttrSource(self.source, "__getattribute__") try: return variables.UserMethodVariable( getattribute_fn, self, source=new_source ).call_function(tx, [ConstantVariable.create(name)], {}) except ObservedAttributeError: # Pass through to __getattr__ if __getattribute__ fails handle_observed_exception(tx) if tx.output.side_effects.has_pending_mutation_of_attr(self, name): result = tx.output.side_effects.load_attr(self, name, deleted_ok=True) if isinstance(result, variables.DeletedVariable): raise_observed_exception(AttributeError, tx) return result if name == "__dict__": options = {"source": source} return variables.GetAttrVariable(self, name, **options) # TODO(anijain2305) - Investigate if we need specialization for more # dunder attrs. inspect.getattr_static does not return correct value for # them. if name == "__class__": cls_source = source if cls_source is None: cls_source = self.cls_source options = {"source": cls_source} return UserDefinedClassVariable(type(self.value), **options) try: subobj = self._getattr_static(name) except AttributeError: subobj = NO_SUCH_SUBOBJ getattr_fn = self._check_for_getattr() if isinstance(getattr_fn, types.FunctionType): # Dynamo is going to trace the __getattr__ function with # args=name. Set the source accordingly. if ( getattr_fn is unpatched_nn_module_getattr and isinstance(self, variables.UnspecializedNNModuleVariable) # prevent against overwriting of params/buffers/submodules and istype(self.value._parameters, dict) and istype(self.value._buffers, dict) and istype(self.value._modules, dict) ): # Manually trace out the nn module __getattr__ to avoid large compilation latency. out = self.manually_trace_nn_module_getattr(tx, name) else: new_source = None if self.source: new_source = AttrSource(self.source, "__getattr__") out = variables.UserMethodVariable( getattr_fn, self, source=new_source ).call_function(tx, [ConstantVariable.create(name)], {}) if self.source and getattr_fn is torch.nn.Module.__getattr__: if isinstance( out, ( variables.UnspecializedNNModuleVariable, variables.NNModuleVariable, ), ): # nn_module_stack source is BC surface area. Ensure that # mod._modules["linear"] is reflected as mod.linear for # nn_module_stack. out.set_nn_module_stack_source( AttrSource(self.get_nn_module_stack_source(), name) ) return out elif getattr_fn is not None: unimplemented("UserDefined with non-function __getattr__") from ..mutation_guard import unpatched_nn_module_init if subobj is torch.nn.Module.__init__: subobj = unpatched_nn_module_init if isinstance(subobj, property): if self.source: # Read the class attribute to reach the property source = AttrSource(AttrSource(self.source, "__class__"), name) # Get the getter function source = AttrSource(source, "fget") return variables.UserMethodVariable( subobj.fget, self, source=source ).call_function(tx, [], {}) elif isinstance(subobj, _collections._tuplegetter): # namedtuple fields are represented by _tuplegetter, and here we # emulate its `__get__`, which is implemented in C. _, (idx, _) = subobj.__reduce__() # Don't go through the `__getitem__` method anymore, see # https://github.com/python/cpython/blob/470941782f74288823b445120f6383914b659f23/Modules/_collectionsmodule.c#L2690 assert isinstance(self, UserDefinedTupleVariable) return self._tuple_vt.items[idx] elif isinstance(subobj, staticmethod): # Safe because `staticmethod.__get__` basically won't trigger user # code and just returns the underlying `__func__`: # https://github.com/python/cpython/blob/3.11/Objects/funcobject.c#L1088-L1100 func = subobj.__get__(self.value) return VariableTracker.build(tx, func, source) elif isinstance(subobj, classmethod): return variables.UserMethodVariable( subobj.__func__, self.var_getattr(tx, "__class__"), source=source ) elif isinstance(subobj, types.ClassMethodDescriptorType): # e.g.: inspect.getattr_static({}, "fromkeys") func = subobj.__get__(self.value, None) return VariableTracker.build(tx, func, source) elif inspect.getattr_static( type(subobj), "__get__", NO_SUCH_SUBOBJ ) is not NO_SUCH_SUBOBJ and not is_wrapper_or_member_descriptor( type(subobj).__get__ ): # Emulate https://github.com/python/cpython/blob/3.11/Objects/object.c#L1271-L1285 # # Attribute has a __get__ method. Create a user defined object vt # for the subobj, and then trace the __get__ method. descriptor_source = None descriptor_get_source = None if self.cls_source: # To access the method descriptor from the udf object w/o using # inspect.getattr_static, we can look into the class mro descriptor_source = self.get_source_by_walking_mro(name) descriptor_get_source = AttrSource( TypeSource(descriptor_source), "__get__" ) descriptor_var = VariableTracker.build(tx, subobj, descriptor_source) else: # Sourceless Builder does not support user defined objects descriptor_var = UserDefinedObjectVariable(subobj) # The arguments of the __get__ function are (self, instance, owner) # self - descriptor_var # instance - instance of the class, represented by self here # owner - class object owner_var = UserDefinedClassVariable(type(self.value)) return variables.UserMethodVariable( subobj.__get__.__func__, descriptor_var, source=descriptor_get_source ).call_function(tx, [self, owner_var], {}) elif isinstance(subobj, types.FunctionType) or ( isinstance(subobj, types.MethodType) and isinstance(self.value, torch.nn.Module) ): # Since we get subobj via self._getattr_static, which may not trigger dynamic lookup. # Static lookup can't tell us it's a method or function correctly, # so we trigger dynamic lookup here to get the correct type. dynamic_subobj = getattr(self.value, name) while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"): subobj = subobj._torchdynamo_inline dynamic_subobj = subobj source = AttrSource(source, "_torchdynamo_inline") if source else None if isinstance(subobj, types.MethodType): if dynamic_subobj.__self__ is not self.value: if not isinstance(dynamic_subobj.__func__, types.FunctionType): unimplemented( f"Found a method whose __func__ is not of FunctionType - {dynamic_subobj}" ) # Use the __self__ attribute of the method to find the # source of the new self object. self_source = None if source is not None: self_source = AttrSource(source, "__self__") object_vt = VariableTracker.build( tx, dynamic_subobj.__self__, self_source ) return variables.UserMethodVariable( dynamic_subobj.__func__, object_vt ) func = subobj.__func__ else: assert isinstance(subobj, types.FunctionType) func = subobj if inspect.ismethod(dynamic_subobj): return variables.UserMethodVariable(func, self, source=source) elif inspect.isfunction(dynamic_subobj): if is_utils_checkpoint(func): return build_checkpoint_variable(source=source) elif source is not None: return trace_rules.lookup(func).create_with_source( func, source=source ) else: return trace_rules.lookup(func)(func) if ( # wrap the source only if inline_inbuilt_nn_modules is set or fsdp modules. This is a temporary solution to # keep Dynamo behavior compatible with no inlining, as there will be some delay to turn on the flag in # fbcode. ( torch._dynamo.config.inline_inbuilt_nn_modules or isinstance(self, variables.FSDPManagedNNModuleVariable) ) and source and isinstance(self, variables.UnspecializedNNModuleVariable) # export has some awkwardness around specialized and unspecialized modules. Skip wrapping source for export # usecase for now. and (not tx.output.export or torch._dynamo.config.install_free_tensors) ): # Recalculate source for params/buffers if name in ("_buffers", "_parameters"): source = UnspecializedParamBufferSource(self.source, name) source = self._wrap_source(source) if subobj is not NO_SUCH_SUBOBJ: if is_wrapper_or_member_descriptor(subobj): options = {"source": source} return variables.GetAttrVariable(self, name, **options) if source: return variables.LazyVariableTracker.create(subobj, source) else: # Check if the subobj is accessible from the class itself. If the class source is known, we can create a # sourceful variable tracker. if self.cls_source is not None: subobj_from_class = inspect.getattr_static( self.value.__class__, name, NO_SUCH_SUBOBJ ) if subobj_from_class is subobj: src_from_class = AttrSource(self.cls_source, name) return variables.LazyVariableTracker.create( subobj_from_class, src_from_class ) return VariableTracker.build(tx, subobj) # Earlier we were returning GetAttrVariable but its incorrect. In absence of attr, Python raises AttributeError. raise_observed_exception(AttributeError, tx) def call_obj_hasattr( self, tx: "InstructionTranslator", name: str ) -> "VariableTracker": if self.source: install_guard( AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR) ) try: var_vt = self.var_getattr(tx, name) return variables.ConstantVariable.create( not isinstance(var_vt, variables.DeletedVariable) ) except ObservedAttributeError: handle_observed_exception(tx) return variables.ConstantVariable.create(False) class FrozenDataClassVariable(UserDefinedObjectVariable): @staticmethod def create(tx, value, source): from dataclasses import fields assert is_frozen_dataclass(value) field_map = {} for field in fields(value): if hasattr(value, field.name): field_map[field.name] = VariableTracker.build( tx, getattr(value, field.name), source and AttrSource(source, field.name), ) return FrozenDataClassVariable(value, fields=field_map, source=source) def __init__(self, value, fields=None, **kwargs) -> None: super().__init__(value, **kwargs) if fields is None: fields = {} self.fields = fields def as_python_constant(self): # NOTE: this is an intentionally limited version of # `as_python_constant` for `nonstrict_trace` implementation. from dataclasses import fields import torch.utils._pytree as pytree if not istype( self.value, (pytree.TreeSpec, pytree.LeafSpec, pytree.ConstantNode) ): # TODO loosen this restriction and fix `as_proxy`. raise NotImplementedError( "currently can't reconstruct arbitrary frozen dataclass instances" ) args = [] kwargs = {} for field in fields(self.value): if field.init: data = self.fields[field.name].as_python_constant() if getattr(field, "kw_only", False): kwargs[field.name] = data else: args.append(data) # This is safe because we know the TreeSpec classes constructors don't # have external side effects. ctor = self.python_type() return ctor(*args, **kwargs) def as_proxy(self): from dataclasses import fields args = [] kwargs = {} for field in fields(self.value): proxy = self.fields[field.name].as_proxy() if hasattr(field, "kw_only") and field.kw_only: kwargs[field.name] = proxy else: args.append(proxy) # TODO this isn't really safe, because # 1. it could invoke a user defined `__post_init__`. # 2. it could invoke a user defined `__init__` if the class _subclasses_ # a frozen dataclass. # Either of the above could end up mutating external state. ctor = self.python_type() return ctor(*args, **kwargs) # NB: This is called during __init__ for a frozen dataclass # use this to accumulate the most up-to-date field values def method_setattr_standard(self, tx: "InstructionTranslator", name, value): self.fields[name.as_python_constant()] = value return super().method_setattr_standard(tx, name, value) def __repr__(self) -> str: return f"{self.__class__.__name__}({self.value_type.__name__})" class SourcelessGraphModuleVariable(UserDefinedObjectVariable): def __init__( self, value, **kwargs, ) -> None: super().__init__(value, **kwargs) def call_method( self, tx, name, args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": fn_variable = variables.UserFunctionVariable(self.value.forward.__func__) args = [self] + args return tx.inline_user_function_return( fn_variable, args, kwargs, ) class UserDefinedExceptionObjectVariable(UserDefinedObjectVariable): def __init__(self, value, **kwargs): super().__init__(value, **kwargs) self.exc_vt = variables.ExceptionVariable(self.value_type, ()) @property def fn(self): return self.value_type def call_method(self, tx, name, args, kwargs): if ( name == "__init__" and (method := self._maybe_get_baseclass_method(name)) and inspect.ismethoddescriptor(method) and len(kwargs) == 0 ): self.exc_vt.args = args self.value.args = args return variables.ConstantVariable(None) if ( name == "__setattr__" and len(args) == 2 and isinstance(args[0], variables.ConstantVariable) and args[0].value in ("__cause__", "__context__", "__suppress_context__", "__traceback__") ): self.exc_vt.call_setattr(tx, args[0], args[1]) return super().call_method(tx, name, args, kwargs) @property def __context__(self): return self.exc_vt.__context__ def set_context(self, context: "variables.ExceptionVariable"): return self.exc_vt.set_context(context) @property def exc_type(self): return self.exc_vt.exc_type class KeyedJaggedTensorVariable(UserDefinedObjectVariable): @staticmethod def is_matching_object(obj): mod = sys.modules.get("torchrec.sparse.jagged_tensor") return mod is not None and type(obj) is mod.KeyedJaggedTensor def __init__(self, value, **kwargs) -> None: from torchrec.sparse.jagged_tensor import KeyedJaggedTensor assert type(value) is KeyedJaggedTensor super().__init__(value, **kwargs) def var_getattr(self, tx: "InstructionTranslator", name): if ( torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt and self.source is not None and name in ("_length_per_key", "_offset_per_key") ): with TracingContext.patch(force_unspec_int_unbacked_size_like=True): return super().var_getattr(tx, name) return super().var_getattr(tx, name) class IntWrapperVariable(UserDefinedObjectVariable): # Dummy class to check if the object is an IntWrapper, and turn it into a # symint @staticmethod def is_matching_object(obj): mod = sys.modules.get("torch.export.dynamic_shapes") return mod is not None and type(obj) is mod._IntWrapper class RemovableHandleClass: # Dummy class to pass to python_type of RemovableHandleVariable # Useful for isinstance check on hooks pass class RemovableHandleVariable(VariableTracker): REMOVED = -1 def __init__( self, mutation_type=None, # index of the registration in the side_effects owned register_hook/handle list, used during removal. idx=None, **kwargs, ) -> None: super().__init__(**kwargs) self.mutation_type = mutation_type self.idx = idx def call_method(self, tx: "InstructionTranslator", method_name, args, kwargs): if method_name == "remove": if self.idx != self.REMOVED: tx.output.side_effects.remove_hook(self.idx) self.idx = self.REMOVED return variables.ConstantVariable.create(None) super().call_method(tx, method_name, args, kwargs) def reconstruct(self, codegen: "PyCodegen"): if self.idx == self.REMOVED: # Hook has already been removed, return a dummy handle codegen.add_push_null( lambda: codegen.load_import_from( "torch._dynamo.utils", "invalid_removeable_handle" ) ) codegen.extend_output(create_call_function(0, False)) return # unreachable due to codegen.add_cache() when the hook is installed super().reconstruct(codegen) def python_type(self): return RemovableHandleClass class UserDefinedDictVariable(UserDefinedObjectVariable): """ Represents user defined objects that are subclasses of dict/OrderedDict. Internally, it uses a ConstDictVariable to represent the dict part of the variable tracker. For everything else, it falls back to UserDefinedObjectVariable. """ _nonvar_fields = UserDefinedObjectVariable._nonvar_fields def __init__(self, value, dict_vt=None, **kwargs): super().__init__(value, **kwargs) self._dict_vt = dict_vt if self._dict_vt is None: assert self.source is None, ( "dict_vt must be constructed by builder.py when source is present" ) self._dict_vt = variables.ConstDictVariable( {}, mutation_type=ValueMutationNew() ) self._dict_methods = dict_methods def call_method( self, tx, name, args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": method = self._maybe_get_baseclass_method(name) if method in self._dict_methods: return self._dict_vt.call_method(tx, name, args, kwargs) return super().call_method(tx, name, args, kwargs) def unpack_var_sequence(self, tx): if type(self.value).__iter__ in ( dict.__iter__, collections.OrderedDict.__iter__, ): return self._dict_vt.unpack_var_sequence(tx) raise NotImplementedError def is_underlying_vt_modified(self, side_effects): return side_effects.is_modified(self._dict_vt) class UserDefinedListVariable(UserDefinedObjectVariable): """ Represents user defined objects that are subclasses of lists. Internally, it uses a ListVariable to represent the list part of the variable tracker. For everything else, it falls back to UserDefinedObjectVariable. """ _nonvar_fields = UserDefinedObjectVariable._nonvar_fields def __init__(self, value, list_vt=None, **kwargs): super().__init__(value, **kwargs) self._list_vt = list_vt if self._list_vt is None: assert self.source is None, ( "list_vt must be constructed by builder.py when source is present" ) self._list_vt = variables.ListVariable([], mutation_type=ValueMutationNew()) def call_method( self, tx, name, args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": assert self._list_vt is not None method = self._maybe_get_baseclass_method(name) if method in list_methods: return self._list_vt.call_method(tx, name, args, kwargs) return super().call_method(tx, name, args, kwargs) def unpack_var_sequence(self, tx): assert self._list_vt is not None if type(self.value).__iter__ is list.__iter__: return self._list_vt.unpack_var_sequence(tx) raise NotImplementedError def is_underlying_vt_modified(self, side_effects): return side_effects.is_modified(self._list_vt) class UserDefinedTupleVariable(UserDefinedObjectVariable): """ Represents user defined objects that are subclasses of tuple. Internally, it uses a TupleVariable to represent the tuple part of the variable tracker. For everything else, it falls back to UserDefinedObjectVariable. """ _nonvar_fields = UserDefinedObjectVariable._nonvar_fields def __init__(self, value, tuple_vt=None, init_args=None, **kwargs): super().__init__(value, init_args=init_args, **kwargs) self._tuple_vt = tuple_vt if self._tuple_vt is None: assert self.source is None, ( "tuple_vt must be constructed by builder.py when source is present" ) # Emulate `tuple.__new__` # https://github.com/python/cpython/blob/3.11/Objects/tupleobject.c#L697-L710 # # TODO this duplicates the logic in `BuiltinVariable(tuple)` from torch._dynamo.symbolic_convert import InstructionTranslator tx = InstructionTranslator.current_tx() elems = init_args[0].unpack_var_sequence(tx) self._tuple_vt = variables.TupleVariable( elems, mutation_type=ValueMutationNew() ) def call_method( self, tx, name, args: "list[VariableTracker]", kwargs: "dict[str, VariableTracker]", ) -> "VariableTracker": assert self._tuple_vt is not None method = self._maybe_get_baseclass_method(name) if method in tuple_methods: return self._tuple_vt.call_method(tx, name, args, kwargs) return super().call_method(tx, name, args, kwargs) def unpack_var_sequence(self, tx): assert self._tuple_vt is not None if type(self.value).__iter__ is tuple.__iter__: return self._tuple_vt.unpack_var_sequence(tx) raise NotImplementedError class MutableMappingVariable(UserDefinedObjectVariable): _nonvar_fields = UserDefinedObjectVariable._nonvar_fields def __init__(self, value, **kwargs): super().__init__(value, **kwargs) self.generic_dict_vt = variables.ConstDictVariable({}) self.mutation_type = AttributeMutationExisting() def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker": # A common pattern in the init code of MutableMapping objects is to # update the __dict__ attribute. To prevent graph break, we directly # return a ConstDictVariable for the __dict__attr. # # However, users can try to add a new attribute to the class using the # __dict__ attribute. To catch this, we save the ConstDictVariable for # the __dict__ and then lookup into this vt for each attr lookup. if name == "get" and type(self.value).get in ( collections.abc.Mapping.get, dict.get, ): return variables.UserMethodVariable(polyfills.mapping_get, self) elif name == "__dict__" and self.source: self.generic_dict_vt = variables.LazyVariableTracker.create( self.value.__dict__, AttrSource(self.source, "__dict__") ) return self.generic_dict_vt elif out := self.generic_dict_vt.maybe_getitem_const( variables.ConstantVariable(name) ): return out else: return super().var_getattr(tx, name) class RandomVariable(UserDefinedObjectVariable): pass