import argparse import datetime import itertools as it import multiprocessing import multiprocessing.dummy import os import queue import pickle import shutil import subprocess import sys import tempfile import threading import time from typing import Tuple, Dict from . import blas_compare_setup MIN_RUN_TIME = 1 NUM_REPLICATES = 20 NUM_THREAD_SETTINGS = (1, 2, 4) RESULT_FILE = os.path.join(blas_compare_setup.WORKING_ROOT, "blas_results.pkl") SCRATCH_DIR = os.path.join(blas_compare_setup.WORKING_ROOT, "scratch") BLAS_CONFIGS = ( ("MKL (2020.3)", blas_compare_setup.MKL_2020_3, None), ("MKL (2020.0)", blas_compare_setup.MKL_2020_0, None), ("OpenBLAS", blas_compare_setup.OPEN_BLAS, None) ) _RESULT_FILE_LOCK = threading.Lock() _WORKER_POOL: queue.Queue[Tuple[str, str, int]] = queue.Queue() def clear_worker_pool(): while not _WORKER_POOL.empty(): _, result_file, _ = _WORKER_POOL.get_nowait() os.remove(result_file) if os.path.exists(SCRATCH_DIR): shutil.rmtree(SCRATCH_DIR) def fill_core_pool(n: int): clear_worker_pool() os.makedirs(SCRATCH_DIR) # Reserve two cores so that bookkeeping does not interfere with runs. cpu_count = multiprocessing.cpu_count() - 2 # Adjacent cores sometimes share cache, so we space out single core runs. step = max(n, 2) for i in range(0, cpu_count, step): core_str = f"{i}" if n == 1 else f"{i},{i + n - 1}" _, result_file = tempfile.mkstemp(suffix=".pkl", prefix=SCRATCH_DIR) _WORKER_POOL.put((core_str, result_file, n)) def _subprocess_main(seed=0, num_threads=1, sub_label="N/A", result_file=None, env=None): import torch from torch.utils.benchmark import Timer conda_prefix = os.getenv("CONDA_PREFIX") assert conda_prefix if not torch.__file__.startswith(conda_prefix): raise ValueError( f"PyTorch mismatch: `import torch` resolved to `{torch.__file__}`, " f"which is not in the correct conda env: {conda_prefix}" ) torch.manual_seed(seed) results = [] for n in [4, 8, 16, 32, 64, 128, 256, 512, 1024, 7, 96, 150, 225]: dtypes = (("Single", torch.float32), ("Double", torch.float64)) shapes = ( # Square MatMul ((n, n), (n, n), "(n x n) x (n x n)", "Matrix-Matrix Product"), # Matrix-Vector product ((n, n), (n, 1), "(n x n) x (n x 1)", "Matrix-Vector Product"), ) for (dtype_name, dtype), (x_shape, y_shape, shape_str, blas_type) in it.product(dtypes, shapes): t = Timer( stmt="torch.mm(x, y)", label=f"torch.mm {shape_str} {blas_type} ({dtype_name})", sub_label=sub_label, description=f"n = {n}", env=os.path.split(env or "")[1] or None, globals={ "x": torch.rand(x_shape, dtype=dtype), "y": torch.rand(y_shape, dtype=dtype), }, num_threads=num_threads, ).blocked_autorange(min_run_time=MIN_RUN_TIME) results.append(t) if result_file is not None: with open(result_file, "wb") as f: pickle.dump(results, f) def run_subprocess(args): seed, env, sub_label, extra_env_vars = args core_str = None try: core_str, result_file, num_threads = _WORKER_POOL.get() with open(result_file, "wb"): pass env_vars: Dict[str, str] = { "PATH": os.getenv("PATH") or "", "PYTHONPATH": os.getenv("PYTHONPATH") or "", # NumPy "OMP_NUM_THREADS": str(num_threads), "MKL_NUM_THREADS": str(num_threads), "NUMEXPR_NUM_THREADS": str(num_threads), } env_vars.update(extra_env_vars or {}) subprocess.run( f"source activate {env} && " f"taskset --cpu-list {core_str} " f"python {os.path.abspath(__file__)} " "--DETAIL-in-subprocess " f"--DETAIL-seed {seed} " f"--DETAIL-num-threads {num_threads} " f"--DETAIL-sub-label '{sub_label}' " f"--DETAIL-result-file {result_file} " f"--DETAIL-env {env}", env=env_vars, stdout=subprocess.PIPE, shell=True ) with open(result_file, "rb") as f: result_bytes = f.read() with _RESULT_FILE_LOCK, \ open(RESULT_FILE, "ab") as f: f.write(result_bytes) except KeyboardInterrupt: pass # Handle ctrl-c gracefully. finally: if core_str is not None: _WORKER_POOL.put((core_str, result_file, num_threads)) def _compare_main(): results = [] with open(RESULT_FILE, "rb") as f: while True: try: results.extend(pickle.load(f)) except EOFError: break from torch.utils.benchmark import Compare comparison = Compare(results) comparison.trim_significant_figures() comparison.colorize() comparison.print() def main(): with open(RESULT_FILE, "wb"): pass for num_threads in NUM_THREAD_SETTINGS: fill_core_pool(num_threads) workers = _WORKER_POOL.qsize() trials = [] for seed in range(NUM_REPLICATES): for sub_label, env, extra_env_vars in BLAS_CONFIGS: env_path = os.path.join(blas_compare_setup.WORKING_ROOT, env) trials.append((seed, env_path, sub_label, extra_env_vars)) n = len(trials) with multiprocessing.dummy.Pool(workers) as pool: start_time = time.time() for i, r in enumerate(pool.imap(run_subprocess, trials)): n_trials_done = i + 1 time_per_result = (time.time() - start_time) / n_trials_done eta = int((n - n_trials_done) * time_per_result) print(f"\r{i + 1} / {n} ETA:{datetime.timedelta(seconds=eta)}".ljust(80), end="") sys.stdout.flush() print(f"\r{n} / {n} Total time: {datetime.timedelta(seconds=int(time.time() - start_time))}") print() # Any env will do, it just needs to have torch for benchmark utils. env_path = os.path.join(blas_compare_setup.WORKING_ROOT, BLAS_CONFIGS[0][1]) subprocess.run( f"source activate {env_path} && " f"python {os.path.abspath(__file__)} " "--DETAIL-in-compare", shell=True ) if __name__ == "__main__": # These flags are for subprocess control, not controlling the main loop. parser = argparse.ArgumentParser() parser.add_argument("--DETAIL-in-subprocess", "--DETAIL_in_subprocess", action="store_true") parser.add_argument("--DETAIL-in-compare", "--DETAIL_in_compare", action="store_true") parser.add_argument("--DETAIL-seed", "--DETAIL_seed", type=int, default=None) parser.add_argument("--DETAIL-num-threads", "--DETAIL_num_threads", type=int, default=None) parser.add_argument("--DETAIL-sub-label", "--DETAIL_sub_label", type=str, default="N/A") parser.add_argument("--DETAIL-result-file", "--DETAIL_result_file", type=str, default=None) parser.add_argument("--DETAIL-env", "--DETAIL_env", type=str, default=None) args = parser.parse_args() if args.DETAIL_in_subprocess: try: _subprocess_main( args.DETAIL_seed, args.DETAIL_num_threads, args.DETAIL_sub_label, args.DETAIL_result_file, args.DETAIL_env, ) except KeyboardInterrupt: pass # Handle ctrl-c gracefully. elif args.DETAIL_in_compare: _compare_main() else: main()