## @package layer_model_helper # Module caffe2.python.layer_model_helper from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core, model_helper, schema from caffe2.python.modeling.parameter_sharing import ( parameter_sharing_context, ) from caffe2.python.optimizer import get_param_device from caffe2.python.layers import layers from caffe2.proto import caffe2_pb2 from future.utils import viewitems import logging import numpy as np import six logger = logging.getLogger(__name__) class LayerModelHelper(model_helper.ModelHelper): """ Model helper for building models on top of layers abstractions. Each layer is the abstraction that is higher level than Operator. Layer is responsible for ownership of it's own parameters and can easily be instantiated in multiple nets possible with different sets of ops. As an example: one can easily instantiate predict and train nets from the same set of layers, where predict net will have subset of the operators from train net. """ def __init__(self, name, input_feature_schema, trainer_extra_schema, keep_blobs=False): super(LayerModelHelper, self).__init__(name=name) self._layer_names = set() self._layers = [] # optimizer bookkeeping self.param_to_optim = {} self._default_optimizer = None self._loss = None self._output_schema = None # Connect Schema to self.net. That particular instance of schmea will be # use for generation of the Layers accross the network and would be used # for connection with Readers. self._input_feature_schema = schema.NewRecord( self.net, input_feature_schema ) if not keep_blobs else input_feature_schema.clone() self._trainer_extra_schema = schema.NewRecord( self.net, trainer_extra_schema ) if not keep_blobs else trainer_extra_schema.clone() self._metrics_schema = schema.Struct() self._init_global_constants() self.param_init_net = self.create_init_net('param_init_net') def add_metric_field(self, name, value): assert name not in self._metrics_schema.fields, ( "Try to add metric field twice: {}".format(name)) self._metrics_schema = self._metrics_schema + schema.Struct( (name, value) ) def add_global_constant(self, name, array=None, dtype=None, initializer=None): # This is global namescope for constants. They will be created in all # init_nets and there should be very few of them. assert name not in self.global_constants self.global_constants[name] = self.net.NextBlob(name) if array is not None: assert initializer is None,\ "Only one from array and initializer should be specified" if dtype is None: array = np.array(array) else: array = np.array(array, dtype=dtype) # TODO: make GivenTensor generic op_name = None if array.dtype == np.int32: op_name = 'GivenTensorIntFill' elif array.dtype == np.int64: op_name = 'GivenTensorInt64Fill' elif array.dtype == np.str: op_name = 'GivenTensorStringFill' elif array.dtype == np.bool: op_name = 'GivenTensorBoolFill' else: op_name = 'GivenTensorFill' def initializer(blob_name): return core.CreateOperator(op_name, [], blob_name, shape=array.shape, values=array.flatten().tolist() ) else: assert initializer is not None self.global_constant_initializers.append( initializer(self.global_constants[name])) return self.global_constants[name] def _init_global_constants(self): self.global_constants = {} self.global_constant_initializers = [] self.add_global_constant('ONE', 1.0) self.add_global_constant('ZERO', 0.0) self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32') self.add_global_constant('OFFLINE_TRAINING', True, dtype='bool') def _add_global_constants(self, init_net): for initializer_op in self.global_constant_initializers: init_net._net.op.extend([initializer_op]) def create_init_net(self, name): init_net = core.Net(name) self._add_global_constants(init_net) return init_net def create_param(self, param_name, shape, initializer, optimizer=None, ps_param=None): if isinstance(param_name, core.BlobReference): param_name = str(param_name) elif isinstance(param_name, six.string_types): # Parameter name will be equal to current Namescope that got # resolved with the respect of parameter sharing of the scopes. param_name = parameter_sharing_context.get_parameter_name( param_name) else: raise "Unsupported type for param_name" param_blob = core.BlobReference(param_name) if len(initializer) == 1: init_op_args = {} else: assert len(initializer) == 2 init_op_args = initializer[1] if shape is not None: init_op_args.update({'shape': shape}) param = layers.LayerParameter( parameter=param_blob, initializer=core.CreateOperator( initializer[0], [], param_blob, **init_op_args ), optimizer=optimizer, ps_param=ps_param, ) return param def next_layer_name(self, prefix): base_name = core.ScopedName(prefix) name = base_name index = 0 while name in self._layer_names: name = base_name + '_auto_' + str(index) index += 1 self._layer_names.add(name) return name def add_layer(self, layer): self._layers.append(layer) for param in layer.get_parameters(): assert isinstance(param.parameter, core.BlobReference) self.param_to_optim[str(param.parameter)] = \ param.optimizer or self.default_optimizer # The primary value of adding everything to self.net - generation of the # operators right away, i.e. if error happens it'll be detected # immediately. Other than this - create_x_net should be called. layer.add_operators(self.net, self.param_init_net) return layer.output_schema def get_parameter_blobs(self): param_blobs = [] for layer in self._layers: for param in layer.get_parameters(): param_blobs.append(param.parameter) return param_blobs @property def default_optimizer(self): return self._default_optimizer @default_optimizer.setter def default_optimizer(self, optimizer): self._default_optimizer = optimizer @property def input_feature_schema(self): return self._input_feature_schema @property def trainer_extra_schema(self): return self._trainer_extra_schema @property def metrics_schema(self): """ Returns the schema that represents model output that should be used for metric reporting. During the training/evaluation this schema will be appended to the schema that represents model output. """ return self._metrics_schema @property def output_schema(self): assert self._output_schema is not None return self._output_schema @output_schema.setter def output_schema(self, schema): assert self._output_schema is None self._output_schema = schema @property def loss(self): assert self._loss is not None return self._loss @loss.setter def loss(self, loss): assert self._loss is None self._loss = loss def add_loss(self, loss, name='unnamed'): assert loss is not None, "Added loss should not be None" assert isinstance(loss, schema.Scalar) or isinstance( loss, schema.Struct ), "Added loss should be a scalar or a struct" if self._loss is None: self._loss = schema.Struct((name, loss)) else: prefix_base = name + '_auto_' index = 0 prefix = name while prefix in self._loss: prefix = prefix_base + str(index) index += 1 loss_struct = schema.Struct((prefix, loss)) self._loss = self._loss + loss_struct def __getattr__(self, layer): if layer.startswith('__'): raise AttributeError(layer) # TODO(amalevich): Add add support for ifbpy inline documentation if layers.layer_exists(layer): def wrapper(*args, **kwargs): return self.add_layer( layers.create_layer(layer, self, *args, **kwargs)) return wrapper elif core.IsOperator(layer): def wrapper(*args, **kwargs): def apply_operator(net, in_record, out_record, **kwargs): # TODO(amalevich): Switch to net.operator as soon as it gets # landed net.__getattr__(layer)(in_record.field_blobs(), out_record.field_blobs(), **kwargs) if 'name' not in kwargs: kwargs['name'] = layer return self.add_layer( layers.create_layer('Functional', self, *args, function=apply_operator, **kwargs)) return wrapper else: raise ValueError( "Trying to create non-registered layer: {}".format(layer)) @property def layers(self): return self._layers def apply_optimizers( self, train_net, train_init_net, grad_map, blob_to_device=None, ): CPU = core.DeviceOption(caffe2_pb2.CPU) # if given, blob_to_device is a map from blob to device_option blob_to_device = blob_to_device or {} for param, optimizer in viewitems(self.param_to_optim): assert optimizer is not None, \ "default optimizer must have been set in add_layer" # note that not all params has gradient and thus we sent None if # gradient does not exists device = get_param_device( param, grad_map.get(str(param)), param_to_device=blob_to_device, default_device=CPU, ) with core.DeviceScope(device): optimizer( train_net, train_init_net, param, grad_map.get(str(param))) def _GetOne(self): return self.global_constants['ONE'] # An optimizer which allows us to do NO optimization def NoOptim(self, *args, **kwargs): pass