# Owner(s): ["module: codegen"] import expecttest import unittest import yaml import textwrap from tools.codegen.model import NativeFunctionsGroup, DispatchKey import tools.codegen.dest as dest import tools.codegen.gen as gen from tools.codegen.gen import LineLoader, parse_native_yaml_struct class TestCodegenModel(expecttest.TestCase): def assertParseErrorInline(self, yaml_str: str, expect: str) -> None: es = yaml.load(yaml_str, Loader=LineLoader) try: parse_native_yaml_struct(es) except AssertionError as e: # hack to strip out the context msg, _ = str(e).split(" in ", 2) self.assertExpectedInline("\n".join(textwrap.wrap(msg)), expect, skip=1) return self.fail(msg="Did not raise when expected to") def assertUfuncErrorInline(self, yaml_str: str, expect: str) -> None: # parse a single structured group out of the yaml to g es = yaml.load(yaml_str, Loader=LineLoader) parsed_yaml = parse_native_yaml_struct(es) native_functions, backend_indices = ( parsed_yaml.native_functions, parsed_yaml.backend_indices, ) grouped_native_functions = gen.get_grouped_native_functions(native_functions) assert len(grouped_native_functions) == 1 g = grouped_native_functions[0] assert isinstance(g, NativeFunctionsGroup) assert g.out.ufunc_inner_loop # this is not ufunc codegen per se, but it does some basic sanity tests for # ufunc generation gen.compute_meta_function_declaration(g) dest.compute_native_function_declaration(g, backend_indices[DispatchKey.CPU]) dest.compute_native_function_declaration(g, backend_indices[DispatchKey.CUDA]) try: # the real kahuna dest.compute_ufunc_cpu(g) dest.compute_ufunc_cpu_kernel(g) dest.compute_ufunc_cuda(g) except AssertionError as e: # hack to strip out the context msg, _ = str(e).split(" in ", 2) self.assertExpectedInline("\n".join(textwrap.wrap(msg)), expect, skip=1) return self.fail(msg="Did not raise when expected to") # NB: indent is hardcoded to be two here, so format your yaml accordingly binop_out = ( "func: binop.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)" ) ti_binop_out = f"""{binop_out} structured: True structured_inherits: TensorIteratorBase""" ti_binop = """func: binop(Tensor self, Tensor other) -> Tensor structured_delegate: binop.out """ ti_unop_out = """func: unop.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) structured: True structured_inherits: TensorIteratorBase""" ti_unop = """func: unop(Tensor self) -> Tensor structured_delegate: unop.out """ def test_nonstructured_ufunc(self) -> None: yaml_str = f"""\ - {self.binop_out} ufunc_inner_loop: Generic: binop (Bool) """ self.assertParseErrorInline( yaml_str, """\ ufunc must be structured""", ) def test_overlapping_ufunc_and_dispatch(self) -> None: yaml_str = f"""\ - {self.ti_binop_out} ufunc_inner_loop: Generic: binop (Bool) dispatch: CPU: binop_cpu """ self.assertParseErrorInline( yaml_str, """\ ufunc should not have explicit dispatch entry for CPU""", ) # See https://github.com/pytorch/pytorch/pull/65851#discussion_r810238456 @unittest.expectedFailure def test_scalaronly_shadowed(self) -> None: yaml_str = f"""\ - {self.ti_binop_out} ufunc_inner_loop: Generic: binop (Bool) ScalarOnly: binop (Bool) """ self.assertParseErrorInline( yaml_str, """\ """, ) def test_conflicting_ufunc(self) -> None: yaml_str = f"""\ - {self.ti_binop_out} ufunc_inner_loop: Generic: binop (Bool) ScalarOnly: binop_scalar (Bool) - {self.ti_binop} """ self.assertUfuncErrorInline( yaml_str, """\ ScalarOnly and Generic must have same ufunc name""", ) def test_invalid_cudafunctoronself_for_binary_op(self) -> None: yaml_str = f"""\ - {self.ti_unop_out} ufunc_inner_loop: Generic: unop (All) CUDAFunctorOnSelf: unop_self_cuda (All) - {self.ti_unop} """ self.assertUfuncErrorInline( yaml_str, """\ cannot use CUDAFunctorOnSelf on non-binary function""", ) if __name__ == "__main__": unittest.main()