from .module import Module from .. import functional as F class LocalResponseNorm(Module): def __init__(self, size, alpha=1e-4, beta=0.75, k=1): r"""Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels. .. math:: `b_{c} = a_{c}\left(k + \frac{\alpha}{n} \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}` Args: size: amount of neighbouring channels used for normalization alpha: multiplicative factor. Default: 0.0001 beta: exponent. Default: 0.75 k: additive factor. Default: 1 Shape: - Input: :math:`(N, C, ...)` - Output: :math:`(N, C, ...)` (same shape as input) Examples:: >>> lrn = nn.LocalResponseNorm(2) >>> signal_2d = autograd.Variable(torch.randn(32, 5, 24, 24)) >>> signal_4d = autograd.Variable(torch.randn(16, 5, 7, 7, 7, 7)) >>> output_2d = lrn(signal_2d) >>> output_4d = lrn(signal_4d) """ super(LocalResponseNorm, self).__init__() self.size = size self.alpha = alpha self.beta = beta self.k = k def forward(self, input): return F.local_response_norm(input, self.size, self.alpha, self.beta, self.k) def __repr__(self): return self.__class__.__name__ + '(' \ + str(self.size) \ + ', alpha=' + str(self.alpha) \ + ', beta=' + str(self.beta) \ + ', k=' + str(self.k) + ')' class CrossMapLRN2d(Module): def __init__(self, size, alpha=1e-4, beta=0.75, k=1): super(CrossMapLRN2d, self).__init__() self.size = size self.alpha = alpha self.beta = beta self.k = k def forward(self, input): return self._backend.CrossMapLRN2d(self.size, self.alpha, self.beta, self.k)(input) def __repr__(self): return self.__class__.__name__ + '(' \ + str(self.size) \ + ', alpha=' + str(self.alpha) \ + ', beta=' + str(self.beta) \ + ', k=' + str(self.k) + ')' # TODO: ContrastiveNorm2d # TODO: DivisiveNorm2d # TODO: SubtractiveNorm2d