#include #include #include #include #include #include #include #include #include #include #include #include using namespace torch::nn; #include #include #include class CartPole { // Translated from openai/gym's cartpole.py public: double gravity = 9.8; double masscart = 1.0; double masspole = 0.1; double total_mass = (masspole + masscart); double length = 0.5; // actually half the pole's length; double polemass_length = (masspole * length); double force_mag = 10.0; double tau = 0.02; // seconds between state updates; // Angle at which to fail the episode double theta_threshold_radians = 12 * 2 * M_PI / 360; double x_threshold = 2.4; int steps_beyond_done = -1; torch::Tensor state; double reward; bool done; int step_ = 0; torch::Tensor getState() { return state; } double getReward() { return reward; } double isDone() { return done; } void reset() { state = torch::empty({4}).uniform_(-0.05, 0.05); steps_beyond_done = -1; step_ = 0; } CartPole() { reset(); } void step(int action) { auto x = state[0].toCFloat(); auto x_dot = state[1].toCFloat(); auto theta = state[2].toCFloat(); auto theta_dot = state[3].toCFloat(); auto force = (action == 1) ? force_mag : -force_mag; auto costheta = std::cos(theta); auto sintheta = std::sin(theta); auto temp = (force + polemass_length * theta_dot * theta_dot * sintheta) / total_mass; auto thetaacc = (gravity * sintheta - costheta * temp) / (length * (4.0 / 3.0 - masspole * costheta * costheta / total_mass)); auto xacc = temp - polemass_length * thetaacc * costheta / total_mass; x = x + tau * x_dot; x_dot = x_dot + tau * xacc; theta = theta + tau * theta_dot; theta_dot = theta_dot + tau * thetaacc; state.data()[0] = x; state.data()[1] = x_dot; state.data()[2] = theta; state.data()[3] = theta_dot; done = x < -x_threshold || x > x_threshold || theta < -theta_threshold_radians || theta > theta_threshold_radians || step_ > 200; if (!done) { reward = 1.0; } else if (steps_beyond_done == -1) { // Pole just fell! steps_beyond_done = 0; reward = 0; } else { if (steps_beyond_done == 0) { AT_ASSERT(false); // Can't do this } } step_++; } }; template bool test_mnist( uint32_t batch_size, uint32_t num_epochs, bool useGPU, M&& model, F&& forward_op, O&& optimizer) { std::cout << "Training MNIST for " << num_epochs << " epochs, rest your eyes for a bit!\n"; struct MNIST_Reader { FILE* fp_; explicit MNIST_Reader(const char* path) { fp_ = fopen(path, "rbe"); if (!fp_) throw std::runtime_error("failed to open file"); } ~MNIST_Reader() { if (fp_) fclose(fp_); } uint32_t read_int() { uint8_t buf[4]; if (fread(buf, sizeof(buf), 1, fp_) != 1) { throw std::runtime_error("failed to read an integer"); } return buf[0] << 24u | buf[1] << 16u | buf[2] << 8u | buf[3]; } uint8_t read_byte() { uint8_t i; if (fread(&i, sizeof(i), 1, fp_) != 1) { throw std::runtime_error("failed to read an byte"); } return i; } }; auto readData = [&](std::string fn) { MNIST_Reader rd(fn.c_str()); /* int image_magic = */ rd.read_int(); int image_count = rd.read_int(); int image_rows = rd.read_int(); int image_cols = rd.read_int(); auto data = torch::empty({image_count, 1, image_rows, image_cols}); auto a_data = data.accessor(); for (int c = 0; c < image_count; c++) { for (int i = 0; i < image_rows; i++) { for (int j = 0; j < image_cols; j++) { a_data[c][0][i][j] = float(rd.read_byte()) / 255; } } } return data.toBackend(useGPU ? torch::kCUDA : torch::kCPU); }; auto readLabels = [&](std::string fn) { MNIST_Reader rd(fn.c_str()); /* int label_magic = */ rd.read_int(); int label_count = rd.read_int(); auto data = torch::empty({label_count}, torch::kInt64); auto a_data = data.accessor(); for (int i = 0; i < label_count; ++i) { a_data[i] = static_cast(rd.read_byte()); } return data.toBackend(useGPU ? torch::kCUDA : torch::kCPU); }; auto trdata = readData("test/cpp/api/mnist/train-images-idx3-ubyte"); auto trlabel = readLabels("test/cpp/api/mnist/train-labels-idx1-ubyte"); auto tedata = readData("test/cpp/api/mnist/t10k-images-idx3-ubyte"); auto telabel = readLabels("test/cpp/api/mnist/t10k-labels-idx1-ubyte"); if (useGPU) { model->to(torch::kCUDA); } std::random_device device; std::mt19937 generator(device()); for (auto epoch = 0U; epoch < num_epochs; epoch++) { auto shuffled_inds = std::vector(trdata.size(0)); for (int i = 0; i < trdata.size(0); i++) { shuffled_inds[i] = i; } std::shuffle(shuffled_inds.begin(), shuffled_inds.end(), generator); const auto backend = useGPU ? torch::kCUDA : torch::kCPU; auto inp = torch::empty({batch_size, 1, trdata.size(2), trdata.size(3)}, backend); auto lab = torch::empty({batch_size}, torch::device(backend).dtype(torch::kInt64)); for (auto p = 0U; p < shuffled_inds.size() - batch_size; p++) { inp[p % batch_size] = trdata[shuffled_inds[p]]; lab[p % batch_size] = trlabel[shuffled_inds[p]]; if (p % batch_size != batch_size - 1) continue; inp.set_requires_grad(true); torch::Tensor x = forward_op(inp); inp.set_requires_grad(false); torch::Tensor y = lab; torch::Tensor loss = torch::nll_loss(x, y); optimizer.zero_grad(); loss.backward(); optimizer.step(); } } torch::NoGradGuard guard; auto result = std::get<1>(forward_op(tedata).max(1)); torch::Tensor correct = (result == telabel).toType(torch::kFloat32); std::cout << "Num correct: " << correct.data().sum().toCFloat() << " out of " << telabel.size(0) << std::endl; return correct.data().sum().toCFloat() > telabel.size(0) * 0.8; } TEST_CASE("integration/cartpole") { torch::manual_seed(0); std::cerr << "Training episodic policy gradient with a critic for up to 3000" " episodes, rest your eyes for a bit!\n"; auto model = std::make_shared(); auto linear = model->add(Linear(4, 128), "linear"); auto policyHead = model->add(Linear(128, 2), "policy"); auto valueHead = model->add(Linear(128, 1), "action"); auto optimizer = torch::optim::Adam(model->parameters(), 1e-3); std::vector saved_log_probs; std::vector saved_values; std::vector rewards; auto forward = [&](torch::Tensor inp) { auto x = linear->forward(inp).clamp_min(0); torch::Tensor actions = policyHead->forward(x); torch::Tensor value = valueHead->forward(x); return std::make_tuple(torch::softmax(actions, -1), value); }; auto selectAction = [&](torch::Tensor state) { // Only work on single state right now, change index to gather for batch auto out = forward(state); auto probs = torch::Tensor(std::get<0>(out)); auto value = torch::Tensor(std::get<1>(out)); auto action = probs.data().multinomial(1)[0].toCInt(); // Compute the log prob of a multinomial distribution. // This should probably be actually implemented in autogradpp... auto p = probs / probs.sum(-1, true); auto log_prob = p[action].log(); saved_log_probs.emplace_back(log_prob); saved_values.push_back(value); return action; }; auto finishEpisode = [&]() { auto R = 0.; for (int i = rewards.size() - 1; i >= 0; i--) { R = rewards[i] + 0.99 * R; rewards[i] = R; } auto r_t = torch::from_blob( rewards.data(), {static_cast(rewards.size())}); r_t = (r_t - r_t.mean()) / (r_t.std() + 1e-5); std::vector policy_loss; std::vector value_loss; for (auto i = 0U; i < saved_log_probs.size(); i++) { auto r = rewards[i] - saved_values[i].toCFloat(); policy_loss.push_back(-r * saved_log_probs[i]); value_loss.push_back(torch::smooth_l1_loss( saved_values[i], torch::ones({1}) * rewards[i])); } auto loss = torch::stack(torch::TensorListView(policy_loss)).sum() + torch::stack(torch::TensorListView(value_loss)).sum(); optimizer.zero_grad(); loss.backward(); optimizer.step(); rewards.clear(); saved_log_probs.clear(); saved_values.clear(); }; auto env = CartPole(); double running_reward = 10.0; for (auto episode = 0;; episode++) { env.reset(); auto state = env.getState(); int t = 0; for (; t < 10000; t++) { auto action = selectAction(state); env.step(action); state = env.getState(); auto reward = env.getReward(); auto done = env.isDone(); rewards.push_back(reward); if (done) break; } running_reward = running_reward * 0.99 + t * 0.01; finishEpisode(); /* if (episode % 10 == 0) { printf("Episode %i\tLast length: %5d\tAverage length: %.2f\n", episode, t, running_reward); } */ if (running_reward > 150) break; REQUIRE(episode < 3000); } } TEST_CASE("integration/mnist", "[cuda]") { torch::manual_seed(0); auto model = std::make_shared(); auto conv1 = model->add(Conv2d(1, 10, 5), "conv1"); auto conv2 = model->add(Conv2d(10, 20, 5), "conv2"); auto drop = Dropout(0.3); auto drop2d = Dropout2d(0.3); auto linear1 = model->add(Linear(320, 50), "linear1"); auto linear2 = model->add(Linear(50, 10), "linear2"); auto forward = [&](torch::Tensor x) { x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu(); x = conv2->forward(x); x = drop2d->forward(x); x = torch::max_pool2d(x, {2, 2}).relu(); x = x.view({-1, 320}); x = linear1->forward(x).clamp_min(0); x = drop->forward(x); x = linear2->forward(x); x = torch::log_softmax(x, 1); return x; }; auto optimizer = torch::optim::SGD( model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5)); REQUIRE(test_mnist( 32, // batch_size 3, // num_epochs true, // useGPU model, forward, optimizer)); } TEST_CASE("integration/mnist/batchnorm", "[cuda]") { torch::manual_seed(0); auto model = std::make_shared(); auto conv1 = model->add(Conv2d(1, 10, 5), "conv1"); auto batchnorm2d = model->add(BatchNorm(BatchNormOptions(10).stateful(true)), "batchnorm2d"); auto conv2 = model->add(Conv2d(10, 20, 5), "conv2"); auto linear1 = model->add(Linear(320, 50), "linear1"); auto batchnorm1 = model->add(BatchNorm(BatchNormOptions(50).stateful(true)), "batchnorm1"); auto linear2 = model->add(Linear(50, 10), "linear2"); auto forward = [&](torch::Tensor x) { x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu(); x = batchnorm2d->forward(x); x = conv2->forward(x); x = torch::max_pool2d(x, {2, 2}).relu(); x = x.view({-1, 320}); x = linear1->forward(x).clamp_min(0); x = batchnorm1->forward(x); x = linear2->forward(x); x = torch::log_softmax(x, 1); return x; }; auto optimizer = torch::optim::SGD( model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5)); REQUIRE(test_mnist( 32, // batch_size 3, // num_epochs true, // useGPU model, forward, optimizer)); }