#include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace { void OptimizeGraph(std::shared_ptr& graph) { Inline(*graph); ConstantPropagation(graph); Canonicalize(graph); ConstantPropagation(graph); RemoveTensorMutation(graph); ConstantPropagation(graph); } void CheckGraphEligibility(const std::shared_ptr& graph) { for (auto n : graph->nodes()) { if (n->kind() == c10::Symbol::fromQualString("prim::GetAttr")) { throw std::runtime_error("Cannot accelerate unfrozen graphs"); } } // check output types // Static Runtime supports output types include None, Tensor and List/Tuple // of Tensor for (Value* output : graph->outputs()) { VLOG(1) << "output: %" << output->debugName() << " has type: " << output->type()->repr_str(); auto kind = output->node()->kind(); if (kind == prim::TupleConstruct || kind == prim::ListConstruct) { for (Value* input : output->node()->inputs()) { const auto& type = input->type(); TORCH_CHECK( type->cast() != nullptr, "Static Runtime expects output type as List or Tuple of Tensor, but got List or Tuple of ", type->repr_str()); } } else { const auto& type = output->type(); TORCH_CHECK( type->cast() != nullptr || type->cast() != nullptr, "Static Runtime expects output type as None or Tensor, but got ", type->repr_str()); } } } // remove unused input 0 from graph void RemoveSelfFromGraphInput(std::shared_ptr& graph) { if (graph->inputs().at(0)->type()->is_module()) { TORCH_CHECK(!graph->inputs().at(0)->hasUses()); graph->eraseInput(0); } } // remove "self" from function schema std::unique_ptr RemoveSelfFromSchema( const c10::FunctionSchema& s) { TORCH_CHECK(s.arguments().size() >= 1 && s.arguments()[0].name() == "self"); std::vector args({s.arguments().begin() + 1, s.arguments().end()}); return std::make_unique(s.cloneWithArguments(args)); } void AssignRegisters( const std::shared_ptr& graph, std::unordered_map& value_to_reg, std::vector& values, std::vector& input_regs, std::vector& output_regs) { // assign register to Value* for (Value* input : graph->inputs()) { TORCH_CHECK(value_to_reg.count(input) == 0); size_t index = value_to_reg.size(); value_to_reg[input] = index; input_regs.push_back(index); } for (Node* node : graph->nodes()) { for (Value* input : node->inputs()) { TORCH_CHECK(value_to_reg.count(input) > 0); } for (Value* output : node->outputs()) { TORCH_CHECK( value_to_reg.count(output) == 0, "the graph needs to be in SSA form"); size_t index = value_to_reg.size(); value_to_reg[output] = index; } } TORCH_CHECK(graph->outputs().size() > 0); for (Value* output : graph->outputs()) { TORCH_CHECK(value_to_reg.count(output) > 0); output_regs.push_back(value_to_reg[output]); } values.resize(value_to_reg.size()); for (const auto& p : value_to_reg) { values[p.second] = p.first; } } // Internal blobs (IValues) are discarded after run if // opts_.cleanup_activations is true. void DeduceInternalBlobs( const std::shared_ptr& graph, const std::unordered_map& value_to_reg, std::vector& internals) { std::unordered_set outputs{graph->outputs().begin(), graph->outputs().end()}; for (Node* node : graph->nodes()) { if (node->kind() != prim::Constant) { for (Value* output : node->outputs()) { if (outputs.count(output) == 0) { internals.push_back(value_to_reg.at(output)); } } } } } } // namespace void InferenceModule::init() { OptimizeGraph(graph); CheckGraphEligibility(graph); RemoveSelfFromGraphInput(graph); AssignRegisters(graph, value_to_reg, values, input_regs, output_regs); DeduceInternalBlobs(graph, value_to_reg, internals); } InferenceModule::InferenceModule(const torch::jit::Module& m) : module(m.copy()), graph(nullptr), schema(nullptr) { module.eval(); module = freeze_module(module); Method method = module.get_method("forward"); graph = method.graph(); const c10::FunctionSchema& s = method.function().getSchema(); schema = RemoveSelfFromSchema(s); init(); } InferenceModule::InferenceModule(std::shared_ptr g) : module(), graph(g), schema(nullptr) { init(); } StaticRuntime::StaticRuntime( const torch::jit::Module& m, const StaticRuntimeOptions& opts) : StaticRuntime(PrepareForStaticRuntime(m), opts) {} StaticRuntime::StaticRuntime( std::shared_ptr m, const StaticRuntimeOptions& opts) : module_(m), opts_(opts) { TORCH_CHECK( module_ != nullptr, "std::shared_ptr module_ cannot be nullptr") // initialize registers reg_.resize(module_->value_to_reg.size()); Graph* graph = module_->graph.get(); const auto& value_to_reg = module_->value_to_reg; // fill workspace_ with constants and create ProcessedNodes for (Node* node : graph->nodes()) { if (node->kind() == prim::Constant) { TORCH_CHECK(node->output()->type()->kind() != FunctionType::Kind); reg_[value_to_reg.at(node->output())] = toIValue(node->output()).value(); } else { std::vector input_regs, output_regs; for (Value* input : node->inputs()) { input_regs.push_back(value_to_reg.at(input)); } for (Value* output : node->outputs()) { output_regs.push_back(value_to_reg.at(output)); } nodes_.emplace_back( node, std::move(input_regs), std::move(output_regs), opts.enable_out_variant); } } } std::vector StaticRuntime::run( const std::vector& inps) { std::vector stack; stack.resize(inps.size()); for (size_t i = 0; i < inps.size(); i++) { stack[i] = inps[i]; } c10::IValue v = run(stack, std::unordered_map()); std::vector out; if (v.isTuple()) { auto t = v.toTuple(); for (const auto& el : t->elements()) { out.emplace_back(el.toTensor()); } } else { out.emplace_back(v.toTensor()); } return out; } c10::IValue StaticRuntime::run( const std::vector& args, const std::unordered_map& kwargs) { if (planner_) { planner_->allocate(); } std::vector stack(args); if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( module_->schema != nullptr, "Schema is not available. Consider creating the Static Runtime " "with StaticRuntime(const torch::jit::Module& m) instead."); module_->schema->checkAndNormalizeInputs(stack, kwargs); } for (size_t i = 0; i < stack.size(); i++) { Input(i) = stack[i]; } for (const auto& n : nodes_) { n.run(reg_); } if (opts_.cleanup_activations) { if (!planner_) { planner_ = std::make_unique(this); } planner_->deallocate(); deallocate_registers(module_->internals); } // no need to keep references of outputs in static runtime anymore DCHECK(module_->output_regs.size() == 1); return std::move(reg_[module_->output_regs[0]]); } void StaticRuntime::benchmark( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { float time_per_iter = benchmark_model(args, kwargs, warmup_runs, main_runs); std::cout << "Static runtime ms per iter: " << time_per_iter << ". Iters per second: " << 1000.0 / time_per_iter << std::endl; IndividualMetrics results = benchmark_individual_ops(args, kwargs, warmup_runs, main_runs); std::cout << "Setting up took " << results.setup_time << " ms" << std::endl; for (size_t i = 0; i < nodes_.size(); i++) { const Node* node = nodes_[i].get_node(); std::cout << "Node #" << i << ": " << results.time_per_node[i] << " ms/iter, "; node->print(std::cout, 0, nullptr, false); } std::vector> time_per_node_type_vec{ results.time_per_node_type.begin(), results.time_per_node_type.end()}; std::sort( time_per_node_type_vec.begin(), time_per_node_type_vec.end(), [](auto& left, auto& right) { return left.second > right.second; }); std::cout << "Time per node type:" << std::endl; for (const auto& p : time_per_node_type_vec) { const std::string& kind = p.first; const double ms = p.second; std::cout << std::setw(15) << ms << " ms. " << std::setw(10) << results.percent_per_node_type[kind] << "%. " << kind << " (" << results.instances_per_node_type[kind] << " nodes)" << std::endl; } std::cout << std::setw(15) << results.total_time << " ms. in Total" << std::endl; } float StaticRuntime::benchmark_model( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); for (int i = 0; i < warmup_runs; i++) { run(args, kwargs); } caffe2::Timer timer; for (int i = 0; i < main_runs; i++) { run(args, kwargs); } float millis = timer.MilliSeconds(); return millis / static_cast(main_runs); } StaticRuntime::IndividualMetrics StaticRuntime::benchmark_individual_ops( const std::vector& args, const std::unordered_map& kwargs, const int warmup_runs, const int main_runs) { TORCH_CHECK(warmup_runs >= 0 && main_runs >= 1); IndividualMetrics results; results.total_time = 0.0; results.time_per_node.resize(nodes_.size(), 0); // setup time caffe2::Timer timer; std::vector stack(args); if (!kwargs.empty()) { // This is not ideal TORCH_CHECK( module_->schema != nullptr, "Schema is not available. Consider creating the Static Runtime " "with StaticRuntime(const torch::jit::Module& m) instead."); module_->schema->checkAndNormalizeInputs(stack, kwargs); } for (size_t i = 0; i < stack.size(); i++) { Input(i) = stack[i]; } results.setup_time = timer.MilliSeconds(); // warmup runs for (int i = 0; i < warmup_runs; i++) { run(args, kwargs); } // main runs for (int i = 0; i < main_runs; i++) { if (planner_) { planner_->allocate(); } for (size_t j = 0; j < nodes_.size(); j++) { timer.Start(); nodes_[j].run(reg_); float millis = timer.MilliSeconds(); results.time_per_node[j] += millis; } if (opts_.cleanup_activations) { if (!planner_) { planner_ = std::make_unique(this); } planner_->deallocate(); deallocate_registers(module_->internals); } } // post processing for (size_t i = 0; i < nodes_.size(); i++) { const Node* node = nodes_[i].get_node(); std::string kind = std::string(node->kind().toQualString()); results.time_per_node[i] /= static_cast(main_runs); results.time_per_node_type[kind] += results.time_per_node[i]; results.instances_per_node_type[kind]++; results.total_time += results.time_per_node[i]; } for (const auto& p : results.time_per_node_type) { const std::string& kind = p.first; results.percent_per_node_type[kind] = p.second / results.total_time * 100; } return results; } void StaticRuntime::deallocate_registers(const std::vector& internals) { // discard Tensor objects to reduce memory usage // they will be re-created in the next iteration regardless for (auto i : internals) { if (reg_[i].isTensor()) { if (reg_[i].toTensor().storage().nbytes() > 0) { reg_[i] = IValue(); } } else { // TensorLists and Tuples // TODO: cache the List and Tuple objects but release what's inside reg_[i] = IValue(); } } } MemoryPlanner::MemoryPlanner(StaticRuntime* runtime) : reg_(runtime->get_registers()) { // collect register indices of outputs of ops with out variant for (const ProcessedNode& node : runtime->get_nodes()) { if (node.has_out_variant()) { for (auto out : node.output_regs()) { reg_out_variant_.insert(out); } } } const InferenceModule* module = runtime->get_inference_module(); // remove model outputs from reg_out_variant_ for (size_t output : module->output_regs) { reg_out_variant_.erase(output); } // remove tensors in output List/Tuple from reg_out_variant_ for (Value* output : module->graph->outputs()) { Node* output_node = output->node(); if (output_node->kind() == prim::TupleConstruct || output_node->kind() == prim::ListConstruct) { for (Value* input : output_node->inputs()) { reg_out_variant_.erase(module->value_to_reg.at(input)); } } } // debug only for (auto reg : reg_out_variant_) { VLOG(1) << "reg_out_variant_: %" << module->values[reg]->debugName(); } // dedup tensor storages (tensor views share the same tensor storage) auto internal_storages_set = reg_to_storage_impls(); internal_storages_.assign( internal_storages_set.begin(), internal_storages_set.end()); internal_blob_max_sizes_.resize(internal_storages_.size()); } // Don't change the size if it is already aligned, otherwise increase the size // to make it aligned. size_t MemoryPlanner::compute_aligned_tensor_size(size_t nbytes) { // Note: everything below is size_t return (nbytes + c10::gAlignment - 1) & (~(c10::gAlignment - 1)); } at::DataPtr MemoryPlanner::allocate_buffer(size_t size) { at::Allocator* allocator = c10::GetCPUAllocator(); return allocator->allocate(size); } std::unordered_set MemoryPlanner::reg_to_storage_impls() { std::unordered_set internal_storages_set; for (auto i : reg_out_variant_) { internal_storages_set.insert( reg_[i].toTensor().storage().unsafeGetStorageImpl()); } return internal_storages_set; } void MemoryPlanner::allocate() { if (internal_blob_max_sizes_sum_ == 0) { return; } buffer_ = allocate_buffer(internal_blob_max_sizes_sum_); size_t offset = 0; uint8_t* start = static_cast(buffer_.get()); for (auto i = 0; i < internal_storages_.size(); i++) { auto tensor_size = internal_blob_max_sizes_[i]; if (tensor_size == 0) { continue; } DCHECK_LE(offset + tensor_size, internal_blob_max_sizes_sum_); void* src = static_cast(start + offset); c10::StorageImpl* impl = internal_storages_[i]; impl->set_data_ptr(at::DataPtr(src, src, nullptr, impl->device())); impl->set_nbytes(tensor_size); offset += tensor_size; } DCHECK_EQ(offset, internal_blob_max_sizes_sum_); } void MemoryPlanner::verify_internal_storages() { auto internal_storages_set = reg_to_storage_impls(); for (auto* storage_impl : internal_storages_) { TORCH_CHECK( internal_storages_set.count(storage_impl) > 0, "Found internal_storage mismatch"); } } void MemoryPlanner::deallocate() { #ifndef NDEBUG verify_internal_storages(); #endif internal_blob_max_sizes_sum_ = 0; // free memory used by outputs of ops in out variants // but keep the TensorImpl and StorageImpl around for (auto i = 0; i < internal_storages_.size(); i++) { c10::StorageImpl* impl = internal_storages_[i]; size_t current_size = compute_aligned_tensor_size(impl->nbytes()); size_t& max_size = internal_blob_max_sizes_[i]; max_size = std::max(max_size, current_size); internal_blob_max_sizes_sum_ += max_size; impl->reset(); } buffer_ = {}; } ProcessedNode::ProcessedNode( Node* node, std::vector&& input_regs, std::vector&& output_regs, bool enable_out_variants) : node_(node), input_regs_(std::move(input_regs)), output_regs_(std::move(output_regs)) { if (node->kind() != prim::ListConstruct && node->kind() != prim::TupleConstruct && node->kind() != prim::ListUnpack) { const Operator& op = node->getOperator(); TORCH_CHECK(op.hasOperation()); op_ = op.getOperation(node); } if (enable_out_variants && canRunOutOfPlace(node)) { fn_ = getOutOfPlaceOperation(node); std::ostringstream ss; node->print(ss, 0, nullptr, false); VLOG(1) << "Switch to out variant for node: " << ss.str(); } if (canRunNatively(node)) { native_fn_ = getNativeOperation(node); std::ostringstream ss; node->print(ss, 0, nullptr, false); VLOG(1) << "Switch to native impl for node: " << ss.str(); } } void ProcessedNode::run(std::vector& reg) const { if (fn_) { fn_->operator()(this, reg); } else if (native_fn_) { native_fn_->operator()(this, reg); } else { std::vector stack; const size_t size = node_->inputs().size(); stack.reserve(size); for (size_t i = 0; i < size; i++) { stack.emplace_back(Input(i, reg)); } if (op_) { op_->operator()(&stack); } else { if (node_->kind() == prim::ListConstruct) { listConstruct( stack, node_->output()->type()->expect(), node_->inputs().size()); } else if (node_->kind() == prim::TupleConstruct) { bool named = node_->output()->type()->expect()->name().has_value(); if (named) { namedTupleConstruct( stack, node_->output()->type()->expect(), node_->inputs().size()); } else { tupleConstruct(stack, node_->inputs().size()); } } else if (node_->kind() == prim::ListUnpack) { size_t num_outputs = node_->outputs().size(); listUnpack(stack, num_outputs); } else { TORCH_CHECK(0, "Unhandled operation!", node_->kind().toQualString()); } } DCHECK_EQ(stack.size(), node_->outputs().size()); for (auto i = 0; i < node_->outputs().size(); i++) { Output(i, reg) = std::move(stack[i]); } } } } // namespace jit } // namespace torch