from __future__ import absolute_import, division, print_function, unicode_literals import torch from .QConfig import QConfig class PackedParams(torch.nn.Module): def __init__(self): super(PackedParams, self).__init__() w = torch.rand((5, 5), dtype=torch.float) wq = torch.quantize_per_tensor(w, 2.0, 0, torch.qint8) self.set_weight_bias(wq, torch.rand(5)) @torch.jit.export def set_weight_bias(self, weight, bias): # type: (torch.Tensor, Optional[torch.Tensor]) -> None self._packed_params = torch.ops.quantized.linear_prepack(weight, bias) @torch.jit.export def _weight_bias(self): return torch.ops.quantized.linear_unpack(self._packed_params) def forward(self, x): return x @torch.jit.export def __getstate__(self): return self._weight_bias() @torch.jit.export def __setstate__(self, state): self.set_weight_bias(state[0], state[1]) def _check_is_script_module(model): if not isinstance(model, torch.jit.ScriptModule): raise ValueError('input must be a script module, got: ' + str(type(model))) def prepare_script(model, qconfig_dict, inplace=False): _check_is_script_module(model) if not inplace: model = model.copy() torch._C._jit_pass_insert_observers(model._c, 'forward', qconfig_dict, True) return model def convert_script(model, inplace=False): _check_is_script_module(model) if not inplace: model = model.copy() torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', True) if 'fbgemm' in torch.backends.quantized.supported_engines: _packed_params_scripted = torch.jit.script(PackedParams())._c torch._C._jit_pass_insert_prepack_unpack(model._c) torch._C._jit_pass_fold_prepack(model._c, _packed_params_scripted) return model # TODO: non-scriptable QConfig will be supported later def script_qconfig(qconfig): return QConfig( activation=torch.jit.script(qconfig.activation())._c, weight=torch.jit.script(qconfig.weight())._c) def quantize_script(model, qconfig_dict, run_fn, run_args, inplace=False): _check_is_script_module(model) if not model._c._has_method('forward'): raise ValueError('input script module does not have forward method') assert not inplace, "We don't support inplace right now" if not inplace: model = model.copy() scripted_qconfig_dict = {k: script_qconfig(v) for k, v in qconfig_dict.items()} torch._C._jit_pass_fold_convbn(model._c) prepare_script(model, scripted_qconfig_dict, True) run_fn(model._c._get_method('forward'), *run_args) # When we mutating graph we didn't create a new ClassType # and the graph executor will run an out dated version # of the graph if we do inplace graph mutation, therefore # we copy the model here # [TODO] This will be fixed later when we figure out # how to properly mutate types model = convert_script(model, False) return model