import difflib import inspect import os import shutil import struct import sys import torch import tarfile import tempfile import warnings from contextlib import closing, contextmanager from ._utils import _import_dotted_name if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import pathlib DEFAULT_PROTOCOL = 2 LONG_SIZE = struct.Struct('=l').size INT_SIZE = struct.Struct('=i').size SHORT_SIZE = struct.Struct('=h').size MAGIC_NUMBER = 0x1950a86a20f9469cfc6c PROTOCOL_VERSION = 1001 STORAGE_KEY_SEPARATOR = ',' class SourceChangeWarning(Warning): pass @contextmanager def mkdtemp(): path = tempfile.mkdtemp() yield path shutil.rmtree(path) _package_registry = [] def register_package(priority, tagger, deserializer): queue_elem = (priority, tagger, deserializer) _package_registry.append(queue_elem) _package_registry.sort() def _cpu_tag(obj): if type(obj).__module__ == 'torch': return 'cpu' def _cuda_tag(obj): if type(obj).__module__ == 'torch.cuda': return 'cuda:' + str(obj.get_device()) def _cpu_deserialize(obj, location): if location == 'cpu': return obj def _cuda_deserialize(obj, location): if location.startswith('cuda'): device = max(int(location[5:]), 0) return obj.cuda(device) register_package(10, _cpu_tag, _cpu_deserialize) register_package(20, _cuda_tag, _cuda_deserialize) def location_tag(storage): for _, tagger, _ in _package_registry: location = tagger(storage) if location: return location raise RuntimeError("don't know how to determine data location of " + torch.typename(storage)) def default_restore_location(storage, location): for _, _, fn in _package_registry: result = fn(storage, location) if result is not None: return result raise RuntimeError("don't know how to restore data location of " + torch.typename(storage) + " (tagged with " + location + ")") def normalize_storage_type(storage_type): return getattr(torch, storage_type.__name__) def storage_to_tensor_type(storage): storage_type = type(storage) module = _import_dotted_name(storage_type.__module__) return getattr(module, storage_type.__name__.replace('Storage', 'Tensor')) def _with_file_like(f, mode, body): """ Executes a body function with a file object for f, opening it in 'mode' if it is a string filename. """ new_fd = False if isinstance(f, str) or \ (sys.version_info[0] == 2 and isinstance(f, unicode)) or \ (sys.version_info[0] == 3 and isinstance(f, pathlib.Path)): new_fd = True f = open(f, mode) try: return body(f) finally: if new_fd: f.close() def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL): """Saves an object to a disk file. See also: :ref:`recommend-saving-models` Args: obj: saved object f: a file-like object (has to implement fileno that returns a file descriptor) or a string containing a file name pickle_module: module used for pickling metadata and objects pickle_protocol: can be specified to override the default protocol """ return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickle_protocol)) def _save(obj, f, pickle_module, pickle_protocol): import torch.nn as nn serialized_container_types = {} serialized_storages = {} def persistent_id(obj): # FIXME: the docs say that persistent_id should only return a string # but torch store returns tuples. This works only in the binary protocol # see # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537 if isinstance(obj, type) and issubclass(obj, nn.Module): if obj in serialized_container_types: return None serialized_container_types[obj] = True source_file = source = None try: source_file = inspect.getsourcefile(obj) source = inspect.getsource(obj) except Exception: # saving the source is optional, so we can ignore any errors warnings.warn("Couldn't retrieve source code for container of " "type " + obj.__name__ + ". It won't be checked " "for correctness upon loading.") return ('module', obj, source_file, source) elif torch.is_storage(obj): storage_type = normalize_storage_type(type(obj)) root, offset = obj._root_storage() root_key = str(root._cdata) location = location_tag(obj) serialized_storages[root_key] = root is_view = obj._cdata != root._cdata if is_view: view_metadata = (str(obj._cdata), offset, obj.size()) else: view_metadata = None return ('storage', storage_type, root_key, location, root.size(), view_metadata) return None sys_info = dict( protocol_version=PROTOCOL_VERSION, little_endian=sys.byteorder == 'little', type_sizes=dict( short=SHORT_SIZE, int=INT_SIZE, long=LONG_SIZE, ), ) pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol) pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol) pickle_module.dump(sys_info, f, protocol=pickle_protocol) pickler = pickle_module.Pickler(f, protocol=pickle_protocol) pickler.persistent_id = persistent_id pickler.dump(obj) serialized_storage_keys = sorted(serialized_storages.keys()) pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol) f.flush() for key in serialized_storage_keys: serialized_storages[key]._write_file(f) def load(f, map_location=None, pickle_module=pickle): """Loads an object saved with :func:`torch.save` from a file. torch.load uses Python's unpickling facilities but treats storages, which underlie tensors, specially. They are first deserialized on the CPU and are then moved to the device they were saved from. If this fails (e.g. because the run time system doesn't have certain devices), an exception is raised. However, storages can be dynamically remapped to an alternative set of devices using the map_location argument. If map_location is a callable, it will be called once for each serialized storage with two arguments: storage and location. The storage argument will be the initial deserialization of the storage, residing on the CPU. Each serialized storage has a location tag associated with it which identifies the device it was saved from, and this tag is the second argument passed to map_location. The builtin location tags are 'cpu' for CPU tensors and 'cuda:device_id' (e.g. 'cuda:2') for CUDA tensors. map_location should return either None or a storage. If map_location returns a storage, it will be used as the final deserialized object, already moved to the right device. Otherwise, torch.load will fall back to the default behavior, as if map_location wasn't specified. If map_location is a dict, it will be used to remap location tags appearing in the file (keys), to ones that specify where to put the storages (values). User extensions can register their own location tags and tagging and deserialization methods using register_package. Args: f: a file-like object (has to implement fileno that returns a file descriptor, and must implement seek), or a string containing a file name map_location: a function or a dict specifying how to remap storage locations pickle_module: module used for unpickling metadata and objects (has to match the pickle_module used to serialize file) Example: >>> torch.load('tensors.pt') # Load all tensors onto the CPU >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage) # Load all tensors onto GPU 1 >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1)) # Map tensors from GPU 1 to GPU 0 >>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'}) """ new_fd = False if isinstance(f, str) or \ (sys.version_info[0] == 2 and isinstance(f, unicode)) or \ (sys.version_info[0] == 3 and isinstance(f, pathlib.Path)): new_fd = True f = open(f, 'rb') try: return _load(f, map_location, pickle_module) finally: if new_fd: f.close() def _load(f, map_location, pickle_module): deserialized_objects = {} if map_location is None: restore_location = default_restore_location elif isinstance(map_location, dict): def restore_location(storage, location): location = map_location.get(location, location) return default_restore_location(storage, location) else: def restore_location(storage, location): result = map_location(storage, location) if result is None: result = default_restore_location(storage, location) return result def _check_container_source(container_type, source_file, original_source): current_source = inspect.getsource(container_type) if original_source != current_source: if container_type.dump_patches: file_name = container_type.__name__ + '.patch' diff = difflib.unified_diff(current_source.split('\n'), original_source.split('\n'), source_file, source_file, lineterm="") lines = '\n'.join(diff) try: with open(file_name, 'a+') as f: file_size = f.seek(0, 2) f.seek(0) if file_size == 0: f.write(lines) elif file_size != len(lines) or f.read() != lines: raise IOError msg = ("Saved a reverse patch to " + file_name + ". " "Run `patch -p0 < " + file_name + "` to revert your " "changes.") except IOError: msg = ("Tried to save a patch, but couldn't create a " "writable file " + file_name + ". Make sure it " "doesn't exist and your working directory is " "writable.") else: msg = ("you can retrieve the original source code by " "accessing the object's source attribute or set " "`torch.nn.Module.dump_patches = True` and use the " "patch tool to revert the changes.") msg = ("source code of class '{}' has changed. {}" .format(torch.typename(container_type), msg)) warnings.warn(msg, SourceChangeWarning) def legacy_load(f): deserialized_objects = {} def persistent_load(saved_id): if isinstance(saved_id, tuple): # Ignore containers that don't have any sources saved if all(saved_id[1:]): _check_container_source(*saved_id) return saved_id[0] return deserialized_objects[int(saved_id)] with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \ mkdtemp() as tmpdir: tar.extract('storages', path=tmpdir) with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f: num_storages = pickle_module.load(f) for i in range(num_storages): args = pickle_module.load(f) key, location, storage_type = args obj = storage_type._new_with_file(f) obj = restore_location(obj, location) deserialized_objects[key] = obj storage_views = pickle_module.load(f) for target_cdata, root_cdata, offset, size in storage_views: root = deserialized_objects[root_cdata] deserialized_objects[target_cdata] = root[offset:offset + size] tar.extract('tensors', path=tmpdir) with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f: num_tensors = pickle_module.load(f) for _ in range(num_tensors): args = pickle_module.load(f) key, storage_id, original_tensor_type = args storage = deserialized_objects[storage_id] tensor_type = storage_to_tensor_type(storage) ndim, = struct.unpack('