import torch import torch.jit from torch.testing._internal.common_utils import run_tests, TEST_WITH_UBSAN, IS_PPC from torch.testing._internal.common_quantization import QuantizationTestCase, \ ModelMultipleOps, ModelMultipleOpsNoAvgPool from torch.testing._internal.common_quantized import override_quantized_engine class ModelNumerics(QuantizationTestCase): def test_float_quant_compare_per_tensor(self): for qengine in ["fbgemm", "qnnpack"]: if qengine not in torch.backends.quantized.supported_engines: continue if qengine == 'qnnpack': if IS_PPC or TEST_WITH_UBSAN: continue with override_quantized_engine(qengine): torch.manual_seed(42) my_model = ModelMultipleOps().to(torch.float32) my_model.eval() calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) out_ref = my_model(eval_data) qModel = torch.quantization.QuantWrapper(my_model) qModel.eval() qModel.qconfig = torch.quantization.default_qconfig torch.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']], inplace=True) torch.quantization.prepare(qModel, inplace=True) qModel(calib_data) torch.quantization.convert(qModel, inplace=True) out_q = qModel(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired # output self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB') def test_float_quant_compare_per_channel(self): # Test for per-channel Quant torch.manual_seed(67) my_model = ModelMultipleOps().to(torch.float32) my_model.eval() calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) out_ref = my_model(eval_data) q_model = torch.quantization.QuantWrapper(my_model) q_model.eval() q_model.qconfig = torch.quantization.default_per_channel_qconfig torch.quantization.fuse_modules(q_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) torch.quantization.prepare(q_model) q_model(calib_data) torch.quantization.convert(q_model) out_q = q_model(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 35 dB self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB') def test_fake_quant_true_quant_compare(self): for qengine in ["fbgemm", "qnnpack"]: if qengine not in torch.backends.quantized.supported_engines: continue if qengine == 'qnnpack': if IS_PPC or TEST_WITH_UBSAN: continue with override_quantized_engine(qengine): torch.manual_seed(67) my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) my_model.eval() out_ref = my_model(eval_data) fq_model = torch.quantization.QuantWrapper(my_model) fq_model.train() fq_model.qconfig = torch.quantization.default_qat_qconfig torch.quantization.fuse_modules(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) torch.quantization.prepare_qat(fq_model) fq_model.eval() fq_model.apply(torch.quantization.disable_fake_quant) fq_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats) fq_model(calib_data) fq_model.apply(torch.quantization.enable_fake_quant) fq_model.apply(torch.quantization.disable_observer) out_fq = fq_model(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq)) # Quantized model output should be close to floating point model output numerically # Setting target SQNR to be 35 dB self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB') torch.quantization.convert(fq_model) out_q = fq_model(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10)) self.assertGreater(SQNRdB, 60, msg='Fake quant and true quant numerics diverge, expect SQNR > 60 dB') # Test to compare weight only quantized model numerics and # activation only quantized model numerics with float def test_weight_only_activation_only_fakequant(self): for qengine in ["fbgemm", "qnnpack"]: if qengine not in torch.backends.quantized.supported_engines: continue if qengine == 'qnnpack': if IS_PPC or TEST_WITH_UBSAN: continue with override_quantized_engine(qengine): torch.manual_seed(67) calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) qconfigset = set([torch.quantization.default_weight_only_qconfig, torch.quantization.default_activation_only_qconfig]) SQNRTarget = [35, 45] for idx, qconfig in enumerate(qconfigset): my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) my_model.eval() out_ref = my_model(eval_data) fq_model = torch.quantization.QuantWrapper(my_model) fq_model.train() fq_model.qconfig = qconfig torch.quantization.fuse_modules(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) torch.quantization.prepare_qat(fq_model) fq_model.eval() fq_model.apply(torch.quantization.disable_fake_quant) fq_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats) fq_model(calib_data) fq_model.apply(torch.quantization.enable_fake_quant) fq_model.apply(torch.quantization.disable_observer) out_fq = fq_model(eval_data) SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq)) self.assertGreater(SQNRdB, SQNRTarget[idx], msg='Quantized model numerics diverge from float') if __name__ == "__main__": run_tests()