# pyre-ignore-all-errors # mypy: ignore-errors import collections import dataclasses import io import os import pickle import queue import threading from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Callable, cast, Dict, List, Optional, Union import fsspec import torch from fsspec.core import url_to_fs from torch import Tensor from torch.distributed._shard._utils import narrow_tensor_by_index from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex from torch.distributed.checkpoint.planner import ( LoadItemType, LoadPlan, LoadPlanner, ReadItem, SavePlan, SavePlanner, WriteItem, WriteItemType, ) from torch.distributed.checkpoint.storage import ( StorageReader, StorageWriter, WriteResult, ) from torch.futures import Future __all__ = [ "FsspecWriter", "FsspecReader", ] @dataclass class _StorageInfo: """ This is the per entry storage info """ relative_path: str offset: int length: int @dataclass class _StoragePrefix: prefix: str DEFAULT_SUFFIX = ".distcp" def _result_from_write_item( item: WriteItem, size_in_bytes, storage_data ) -> WriteResult: return WriteResult( index=item.index, size_in_bytes=size_in_bytes, storage_data=storage_data ) class _TensorLoader(ABC): @abstractmethod def add(self, size: int, obj: object): pass @abstractmethod def start_loading(self): pass @abstractmethod def values(self): pass class _SerialCpuLoader(_TensorLoader): def __init__(self, resolve_fun: Callable): self.resolve_fun = resolve_fun self.items = [] def add(self, size: int, obj: object): self.items.append((size, obj)) def start_loading(self): pass def values(self): for _, obj in self.items: tensor = self.resolve_fun(obj).detach() tensor = tensor.cpu() if tensor.storage().size() != tensor.numel(): tensor = tensor.clone() yield ( tensor, obj, ) class _OverlappingCpuLoader(_TensorLoader): def __init__( self, resolve_fun: Callable, stream: Union[None, io.RawIOBase, torch._C._CudaStreamBase] = None, inflight_threshhold: int = 1_000_000, ): self.resolve_fun = resolve_fun self.items = [] self.inflight_threshhold = inflight_threshhold self.in_flight_data = 0 self.current_items: collections.deque = collections.deque() self.idx = 0 self.started = False self.stream = stream or torch.cuda.current_stream() if self.stream != torch.cuda.current_stream(): self.stream.wait_stream(torch.cuda.current_stream()) @property def _done(self): return self.idx >= len(self.items) def _drain(self): drained = [] if self.in_flight_data >= self.inflight_threshhold: self.stream.synchronize() while self.in_flight_data >= self.inflight_threshhold: val = self.current_items.popleft() self.in_flight_data -= val[0].numel() * val[0].element_size() drained.append(val) return drained def _refill(self): with torch.cuda.stream(self.stream): while ( not self._done and self.in_flight_data < self.inflight_threshhold ): _, obj = self.items[self.idx] self.idx += 1 tensor = self.resolve_fun(obj).detach() if tensor.is_cuda: tensor = tensor.to(device="cpu", non_blocking=True) elif tensor.device == torch.device("cpu"): if tensor.storage().size() != tensor.numel(): # this forces the tensor to be both contiguous and with minimal storage tensor = tensor.clone() self.current_items.append( ( tensor, obj, ) ) self.in_flight_data += tensor.numel() * tensor.element_size() def _finish(self): assert self._done if len(self.current_items) > 0: self.stream.synchronize() return self.current_items def add(self, size: int, obj: object): if self.started: raise RuntimeError("cannot add items after loading started") self.items.append((size, obj)) def start_loading(self): if self.started: return self.started = True self.items.sort(key=lambda x: x[0]) self._refill() def values(self): self.start_loading() while not self._done: drained = self._drain() self._refill() yield from drained yield from self._finish() def _item_size(item: WriteItem) -> int: size = 1 assert item.tensor_data is not None # can't use math.prod as PT needs to support older python for s in item.tensor_data.size: size *= s dtype = item.tensor_data.properties.dtype return size * torch._utils._element_size(dtype) def _split_by_size_and_type( bins: int, items: List[WriteItem] ) -> List[List[WriteItem]]: if bins == 1: return [items] bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO] tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO] buckets: List[List[WriteItem]] = [[] for _ in range(bins)] bucket_sizes = [0 for _ in range(bins)] tensor_w.sort(key=_item_size, reverse=True) for i, wi in enumerate(bytes_w): buckets[i % bins].append(wi) for wi in tensor_w: # TODO replace with headq idx = min(enumerate(bucket_sizes), key=lambda x: x[1])[0] buckets[idx].append(wi) bucket_sizes[idx] += _item_size(wi) return buckets def _write_item( stream: Optional[Union[io.RawIOBase, torch._C._CudaStreamBase]], data: Union[io.BytesIO, torch.Tensor], write_item: WriteItem, storage_key: str, ): offset = stream.tell() if write_item.type == WriteItemType.BYTE_IO: assert isinstance(data, io.BytesIO) stream.write(data.getbuffer()) else: assert isinstance(data, torch.Tensor) assert data.device == torch.device("cpu") torch.save(data, stream) length = stream.tell() - offset return _result_from_write_item( write_item, length, _StorageInfo(storage_key, offset, length) ) def _write_files_from_queue( file_queue: queue.Queue, result_queue: queue.Queue, planner: SavePlanner, inflight_threshhold: int, ): try: while True: file_name, storage_key, write_items = file_queue.get_nowait() loader: _TensorLoader if torch.cuda.is_available() and inflight_threshhold > 0: loader = _OverlappingCpuLoader( lambda x: planner.resolve_data(x), inflight_threshhold=inflight_threshhold, ) else: loader = _SerialCpuLoader( lambda x: planner.resolve_data(x), ) tensor_w = [ wi for wi in write_items if wi.type != WriteItemType.BYTE_IO ] for write_item in tensor_w: loader.add(_item_size(write_item), write_item) loader.start_loading() bytes_w = [ wi for wi in write_items if wi.type == WriteItemType.BYTE_IO ] write_results = [] with fsspec.open(file_name, "wb") as stream: for write_item in bytes_w: data = planner.resolve_data(write_item) write_results.append( _write_item(stream, data, write_item, storage_key) ) for tensor, write_item in loader.values(): assert not tensor.is_cuda write_results.append( _write_item(stream, tensor, write_item, storage_key) ) result_queue.put(write_results) except queue.Empty: pass class FsspecWriter(StorageWriter): """ Basic implementation of StorageWriter using FFspec. This implementation makes the following assumptions and simplifications: * The checkpoint path is an empty or non-existing directory. * File creation is atomic The checkpoint consist of one file per write request plus a `.metadata` file with the serialized metadata. """ def __init__( self, path: Union[str, os.PathLike], thread_count: int = 1, per_thread_copy_ahead: int = 10_000_000, ) -> None: """ Initialize the writer pointing to `path` Args: path: diretory where the checkpoint will be writen to. thread_count: Number of IO threads to use to write. Default to 1. per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. N. B. There's no guarantee that the checkpoint will be consistent in the case of a failure. """ super().__init__() self.path = path self.fs, _ = url_to_fs(path) self.thread_count = thread_count self.per_thread_copy_ahead = per_thread_copy_ahead def set_up_storage_writer(self, is_coordinator: bool) -> None: pass def prepare_local_plan(self, plan: SavePlan) -> SavePlan: self.fs.makedirs(self.path, exist_ok=True) return plan def prepare_global_plan( self, global_plan: List[SavePlan] ) -> List[SavePlan]: new_plans = [ dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_")) for i, plan in enumerate(global_plan) ] return new_plans def write_data( self, plan: SavePlan, planner: SavePlanner, ) -> Future[List[WriteResult]]: storage_plan: _StoragePrefix = plan.storage_data file_count = 0 def gen_file(): nonlocal file_count file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}" file_count += 1 return file_name file_queue: queue.Queue = queue.Queue() for item in plan.items: file_name = gen_file() file_path = os.path.join(self.path, file_name) file_queue.put((file_path, file_name, [item])) result_queue: queue.Queue = queue.Queue() threads = [] for _ in range(1, self.thread_count): t = threading.Thread( target=_write_files_from_queue, args=( file_queue, result_queue, planner, self.per_thread_copy_ahead, ), ) t.start() threads.append(t) _write_files_from_queue( file_queue=file_queue, result_queue=result_queue, planner=planner, inflight_threshhold=self.per_thread_copy_ahead, ) for t in threads: t.join() res = [] try: while True: res += result_queue.get_nowait() except queue.Empty: pass fut: Future[List[WriteResult]] = Future() fut.set_result(res) return fut def finish( self, metadata: Metadata, results: List[List[WriteResult]] ) -> None: storage_md = dict() for wr_list in results: storage_md.update({wr.index: wr.storage_data for wr in wr_list}) metadata.storage_data = storage_md metadata_path = os.path.join(self.path, ".metadata") with self.fs.transaction: with fsspec.open(metadata_path, "wb") as metadata_file: pickle.dump(metadata, metadata_file) class FsspecReader(StorageReader): def __init__(self, path: Union[str, os.PathLike]) -> None: super().__init__() self.path = path self.fs, _ = url_to_fs(path) self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict() def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]: # group requests by file per_file: Dict[str, List[ReadItem]] = dict() for read_item in plan.items: item_md = self.storage_data[read_item.storage_index] path = item_md.relative_path per_file.setdefault(path, []).append(read_item) for relative_path, reqs in per_file.items(): abs_path = os.path.join(self.path, relative_path) with fsspec.open(abs_path, "rb") as file: # TODO sort by offset and cache the reading for req in reqs: item_md = self.storage_data[req.storage_index] if req.type == LoadItemType.BYTE_IO: bytes = io.BytesIO(file.read(item_md.length)) bytes.seek(0) planner.load_bytes(req, bytes) else: tensor = cast( Tensor, torch.load(file, map_location="cpu") ) tensor = narrow_tensor_by_index( tensor, req.storage_offsets, req.lengths ) target_tensor = planner.resolve_tensor(req).detach() assert ( target_tensor.size() == tensor.size() ), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}" target_tensor.copy_(tensor) planner.commit_tensor(req, target_tensor) fut: Future = Future() fut.set_result(None) return fut # Implementating the abstract function in StorageReader def read_metadata(self) -> Metadata: metadata_path = os.path.join(self.path, ".metadata") with fsspec.open(metadata_path, "rb") as metadata_file: return pickle.load(metadata_file) def set_up_storage_reader( self, metadata: Metadata, is_coordinator: bool ) -> None: self.storage_data = metadata.storage_data assert self.storage_data is not None def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan: return plan def prepare_global_plan( self, global_plan: List[LoadPlan] ) -> List[LoadPlan]: return global_plan