r"""Importing this file includes common utility methods and base clases for checking quantization api and properties of resulting modules. """ import torch import torch.nn.quantized as nnq from common_utils import TestCase from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, default_qconfig # QuantizationTestCase used as a base class for testing quantization on modules class QuantizationTestCase(TestCase): def checkNoPrepModules(self, module): r"""Checks the module does not contain child modules for quantization prepration, e.g. quant, dequant and observer """ self.assertFalse(hasattr(module, 'quant')) self.assertFalse(hasattr(module, 'dequant')) def checkHasPrepModules(self, module): r"""Checks the module contains child modules for quantization prepration, e.g. quant, dequant and observer """ self.assertTrue(hasattr(module, 'module')) self.assertTrue(hasattr(module, 'quant')) self.assertTrue(hasattr(module, 'dequant')) def checkObservers(self, module): r"""Checks the module or module's leaf descendants have observers in preperation for quantization """ if hasattr(module, 'qconfig') and module.qconfig is not None and len(module._modules) == 0: self.assertTrue(hasattr(module, 'observer')) for child in module.children(): self.checkObservers(child) def checkQuantDequant(self, mod): r"""Checks that mod has nn.Quantize and nn.DeQuantize submodules inserted """ self.assertEqual(type(mod.quant), nnq.Quantize) self.assertEqual(type(mod.dequant), nnq.DeQuantize) def checkQuantizedLinear(self, mod): r"""Checks that mod has been swapped for an nnq.Linear module, the bias is qint32, and that the module has Quantize and DeQuantize submodules """ self.assertEqual(type(mod.module), nnq.Linear) self.assertEqual(mod.module.bias.dtype, torch.qint32) self.checkQuantDequant(mod) def checkLinear(self, mod): self.assertEqual(type(mod), torch.nn.Linear) # Below are a series of neural net models to use in testing quantization class SingleLayerLinearModel(torch.nn.Module): def __init__(self): super(SingleLayerLinearModel, self).__init__() self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) return x class TwoLayerLinearModel(torch.nn.Module): def __init__(self): super(TwoLayerLinearModel, self).__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x class LinearReluModel(torch.nn.Module): def __init__(self): super(LinearReluModel, self).__init__() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) self.relu = torch.nn.ReLU() def forward(self, x): x = self.relu(self.fc(x)) return x class NestedModel(torch.nn.Module): def __init__(self): super(NestedModel, self).__init__() self.sub1 = LinearReluModel() self.sub2 = TwoLayerLinearModel() self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.sub1(x) x = self.sub2(x) x = self.fc3(x) return x class InnerModule(torch.nn.Module): def __init__(self): super(InnerModule, self).__init__() self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float) def forward(self, x): return self.relu(self.fc2(self.relu(self.fc1(x)))) class WrappedModel(torch.nn.Module): def __init__(self): super(WrappedModel, self).__init__() self.qconfig = default_qconfig self.sub = QuantWrapper(InnerModule()) self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) # don't quantize this fc self.fc.qconfig = None def forward(self, x): return self.fc(self.sub(x)) class ManualQuantModel(torch.nn.Module): r"""A Module with manually inserted `QuantStub` and `DeQuantStub` """ def __init__(self): super(ManualQuantModel, self).__init__() self.qconfig = default_qconfig self.quant = QuantStub() self.dequant = DeQuantStub() self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float) def forward(self, x): x = self.quant(x) x = self.fc(x) return self.dequant(x)