import torch from functools import reduce from operator import mul def maybe_view(variable, size, check_same_size=True): if check_same_size and variable.size() == size: return variable return variable.contiguous().view(size) def maybe_unexpand(variable, old_size, check_same_size=True): if check_same_size and variable.size() == old_size: return variable num_unsqueezed = variable.dim() - len(old_size) expanded_dims = [dim for dim, (expanded, original) in enumerate(zip(variable.size()[num_unsqueezed:], old_size)) if expanded != original] for _ in range(num_unsqueezed): variable = variable.sum(0, keepdim=False) for dim in expanded_dims: variable = variable.sum(dim, keepdim=True) return variable _SAME_SIZE = 2 _EXPANDABLE = 1 _NOT_EXPANDABLE = 0 def variable_expandable(variable, old_size): if variable.size() == old_size: return _SAME_SIZE try: torch._C._infer_size(variable.size(), old_size) except RuntimeError: return _NOT_EXPANDABLE return _EXPANDABLE def maybe_unexpand_or_view(variable, old_size): var_expanded = variable_expandable(variable, old_size) if var_expanded == _SAME_SIZE: return variable elif var_expanded == _EXPANDABLE: return maybe_unexpand(variable, old_size, False) else: return maybe_view(variable, old_size, False) # Turn the parameter pad in pytorch into paddings in ONNX order. def prepare_onnx_paddings(input, pad): dim = len(input.type().sizes()) # The order of paddings is dim_0_begin, dim_0_end, dim_1_begin, ... , dim_n_end. # n is the dimension of input. assert len(pad) <= dim * 2 paddings = [] # pad is guaranteed to have even elements. for i, j in zip(pad[0::2], pad[1::2]): paddings = [i, j] + paddings while len(paddings) < 2 * dim: paddings = [0, 0] + paddings assert len(paddings) == dim * 2 return paddings # Check whether the op enable broadcasting, and whether it is supported by ONNX. # Details can be found here: https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm def check_onnx_broadcast(dims1, dims2): broadcast = False supported = True len1 = len(dims1) len2 = len(dims2) numel1 = reduce(lambda x, y: x * y, dims1) numel2 = reduce(lambda x, y: x * y, dims2) if len1 < len2: broadcast = True supported = False elif len1 > len2: broadcast = True if numel2 != 1 and dims1[len1 - len2:] != dims2: supported = False else: if dims1 != dims2: broadcast = True if numel2 != 1: supported = False return broadcast, supported