""" This file includes private common utilities for FSDP. """ import traceback import warnings from enum import auto, Enum from typing import ( Any, Callable, cast, Dict, Generator, Iterable, List, no_type_check, Optional, Set, Tuple, ) import torch import torch.distributed as dist import torch.distributed.fsdp.flat_param as flat_param_file import torch.nn as nn from torch.distributed._composable_state import _get_module_state, _State from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( _CHECKPOINT_PREFIX, ) from .api import ( FullOptimStateDictConfig, FullStateDictConfig, OptimStateDictConfig, ShardingStrategy, StateDictConfig, StateDictType, ) FSDP_WRAPPED_MODULE = "_fsdp_wrapped_module" FSDP_PREFIX = FSDP_WRAPPED_MODULE + "." FSDP_FLATTENED = "_fsdp_flattened" class _FSDPDeviceHandle: """ This is a simple abstraction for FSDP computing devices, which enables custom backends that implement CUDA-like semantics to be integrated with FSDP. """ def __init__(self, device: torch.device, backend: Any = None): if backend is None: try: self.__backend = getattr(torch, device.type) self.__device = device except AttributeError: raise AttributeError( f"Device '{device}' does not have a corresponding backend registered as 'torch.{device.type}'." ) else: self.__backend = backend @classmethod def from_device(cls, device: torch.device) -> "_FSDPDeviceHandle": """ Return an device handle corresponding to the device, and through this handle, operations with the same semantics as CUDA can be performed on the device. Just return torch.cuda if the device is cuda to make attribute-access faster. Custom backend must first register a module with the same name with {device.type} on torch. """ if device.type == "cuda": return cast(_FSDPDeviceHandle, torch.cuda) return cls(device) def __getattr__(self, __name: str) -> Any: try: return getattr(self.__backend, __name) except AttributeError: raise AttributeError( f"Custom backend '{self.__device.type}' not implement 'torch.{self.__device.type}.{__name}'" ) class _UninitializedDeviceHandle(_FSDPDeviceHandle): def __init__(self): pass def __getattribute__(self, __name: str) -> Any: raise RuntimeError("Trying to use an uninitialized device handle.") class _FSDPState(_State): def __init__(self) -> None: # TODO: Move all the attributes to this class to enable typing for # FSDP/fully_shard. self._ignored_modules: Set[nn.Module] = set() self._ignored_params: Set[nn.Parameter] = set() self.process_group: Optional[dist.ProcessGroup] = None self.rank: int = -1 self.world_size: int = -1 self.sharding_strategy = ShardingStrategy.FULL_SHARD self._use_orig_params: bool = False self.training_state = TrainingState.IDLE self._unshard_params_ctx: Dict[nn.Module, Generator] = {} self._state_dict_type: StateDictType = StateDictType.FULL_STATE_DICT self._state_dict_config: StateDictConfig = FullStateDictConfig() self._optim_state_dict_config: OptimStateDictConfig = FullOptimStateDictConfig() self._is_root: Optional[bool] = None self._handles: List[flat_param_file.FlatParamHandle] = [] self._fully_sharded_module_to_handles: Dict[ nn.Module, List[flat_param_file.FlatParamHandle] ] = {} self.compute_device: Optional[torch.device] = None # Abstract device handle for fsdp compute device. For now, # the compute device must implement cuda semantics used by fsdp self._device_handle: _FSDPDeviceHandle = _UninitializedDeviceHandle() # All following attributes should only be used for root states: # Save these static lists to avoid the repeated tree traversals self._all_fsdp_states: List[_FSDPState] = [] self._all_handles: List[flat_param_file.FlatParamHandle] = [] def _get_module_fsdp_state(module: nn.Module) -> Optional[_FSDPState]: state = _get_module_state(module) if state is None or not isinstance(state, _FSDPState): return None return state def _get_module_fsdp_state_if_fully_sharded_module( module: nn.Module, ) -> Optional[_FSDPState]: state = _get_module_fsdp_state(module) if state is None: return None if state == module: # FullyShardedDataParallel module case. return state if module in state._fully_sharded_module_to_handles: # fully_shard case. return state return None class TrainingState(Enum): """ An enum that indicates the state of a ``FullyShardedDataParallel` instance. """ IDLE = auto() FORWARD_BACKWARD = auto() SUMMON_FULL_PARAMS = auto() class HandleTrainingState(Enum): """ An enum that indicates the state of a ``FlatParamHandle`. """ IDLE = auto() FORWARD = auto() BACKWARD_PRE = auto() BACKWARD_POST = auto() SUMMON_FULL_PARAMS = auto() def _is_composable(state: _FSDPState): # TODO: This is a temporary hack for differentiate between code paths. return not isinstance(state, nn.Module) @no_type_check def _module_handles(state: _FSDPState, module: nn.Module) -> List: """ Returns the ``FlatParamHandle`` s corresponding to ``module``. These are the handles that contain some parameter in ``module``. """ if _is_composable(state): assert ( module in state._fully_sharded_module_to_handles ), f"Expects a fully sharded module but got {module} on rank {state.rank}" return state._fully_sharded_module_to_handles[module][:] else: # NOTE: This assumes `module` is a `FullyShardedDataParallel` instance. return module._handles[:] @no_type_check def _has_fsdp_params(state: _FSDPState, module: nn.Module) -> bool: """Returns if ``module`` has parameters managed by FSDP.""" return len(_module_handles(state, module)) > 0 def _get_sharding_strategy(handles: Iterable): """ Returns the sharding strategy of the group of handles given by ``handles`` or ``None`` if ``handles`` is empty. The input should be the handles corresponding to one module, so we enforce that they all share the same sharding strategy. """ sharding_strategy = None for handle in handles: if sharding_strategy is None: sharding_strategy = handle._sharding_strategy elif ( sharding_strategy is not None and sharding_strategy != handle._sharding_strategy ): raise AssertionError( "Expects each group of handles to have the same sharding " f"strategy but got {sharding_strategy} and {handle._sharding_strategy}" ) return sharding_strategy def clean_tensor_name(tensor_name: str) -> str: """ Cleans the parameter or buffer name by removing any module wrapper prefixes. """ tensor_name = tensor_name.replace(FSDP_PREFIX, "") # TODO: Explicitly replacing the checkpoint wrapper prefix is not ideal as # it couples `CheckpointWrapper` and FSDP and also does not scale for more # module wrappers. tensor_name = tensor_name.replace(_CHECKPOINT_PREFIX, "") return tensor_name def _set_fsdp_flattened(tensor: torch.Tensor) -> None: """ Sets an attribute on ``tensor`` to mark it as flattened by FSDP. This is to avoid re-flattening it during nested construction. """ setattr(tensor, FSDP_FLATTENED, True) def _is_fsdp_flattened(tensor: torch.Tensor) -> bool: """Returns if ``tensor`` has been marked as flattened by FSDP.""" return getattr(tensor, FSDP_FLATTENED, False) def _named_parameters_with_duplicates( module: nn.Module, **kwargs: Any ) -> List[Tuple[str, nn.Parameter]]: """ This API is required as some modules overwrite `named_parameters()` but do not support `remove_duplicate`. """ assert ( "remove_duplicate" not in kwargs ), "_named_parameters_with_duplicates cannot be used with `remove_duplicate` argument." kwargs["remove_duplicate"] = False try: ret = list(module.named_parameters(**kwargs)) except AssertionError as e: kwargs.pop("remove_duplicate") ret = list(module.named_parameters(**kwargs)) return ret def _get_param_to_fqns( model: torch.nn.Module, dedup_shared_params: bool = True, ) -> Dict[nn.Parameter, List[str]]: """ Constructs a mapping from parameter to a list of its FQNs. Each normal parameter maps to a singleton list containing its FQN, while each ``FlatParameter`` maps to a list of its original parameter FQNs, which may have length greater than one. All FQNs are prefixed starting from ``model``. Args: model (torch.nn.Module): Root module (which may or may not be a :class:`FullyShardedDataParallel` instance). dedup_shared_params (bool): For shared parameters, if ``True``, only includes the FQNs corresponding to the first encounter of the shared parameter in the module traversal; if ``False``, then includes the FQNs across all encounters. (Default: ``True``) """ def module_fn(module, prefix, tree_level, param_to_fqns): for param_name, param in _named_parameters_with_duplicates( module, recurse=False ): local_fqns = ( param._fqns if type(param) is flat_param_file.FlatParameter else [param_name] ) # prefixed from `module` global_fqns = [ clean_tensor_name(prefix + name) for name in local_fqns ] # prefixed from the top level `model` (i.e. including `prefix`) is_shared_param = param in param_to_fqns if not is_shared_param: param_to_fqns[param] = global_fqns else: if type(param) is flat_param_file.FlatParameter: # DMP overwrites `named_parameters` and skip (advance to # the next child module) the wrapped_module (e.g., # _dmp_wrapped_module and _fsdp_wrapped_module). When a user # calls `named_child` to traverse the module recursively and # calls `named_parameters` with `recurse=False`, parameters # will be traversed more than once. # This hack is specified designed for DMP + FSDP. We # overwrite the flat_parameters traversal result to only obtain # the last one, which happens to be the correct one. # # TODO: Remove this hack once DMP + FSDP is not supported. warnings.warn( "FlatParameter is being traversed more than once. " "This case should only happen when using " "DistributedModelParallel with FullyShardedDataParallel." ) param_to_fqns[param] = global_fqns elif not dedup_shared_params: param_to_fqns[param].extend(global_fqns) def return_fn(param_to_fqns): return param_to_fqns param_to_unflat_param_names: Dict[torch.nn.Parameter, List[str]] = {} return _apply_to_modules( model, module_fn, return_fn, [key for key, _ in _named_parameters_with_duplicates(model)], param_to_unflat_param_names, ) def _apply_to_modules( root_module: torch.nn.Module, module_fn: Callable, return_fn: Callable, filter_fqns: Optional[List[str]] = None, *args, **kwargs, ): """ Performs a pre-order traversal of the modules in the hierarchy rooted at ``root_module``, applying ``module_fn`` at each module and finally returning a value using ``return_fn``. The traversal constructs the full module prefix name (e.g. "module.submodule." just like in model state dict) and makes that available to ``module_fn``. ``filter_fqns`` is used because some module may have its own prefix similar to ``FullyShardedDataParallel`` and the ``named_parameters()`` is overwritten to remove the prefix. """ def f(module: torch.nn.Module, prefix: str, tree_level: int, *args, **kwargs): # Call the module function before recursing over children (pre-order) module_fn(module, prefix, tree_level, *args, **kwargs) for submodule_name, submodule in module.named_children(): if submodule is None: continue new_prefix = prefix + submodule_name + "." new_tree_level = tree_level + 1 if filter_fqns is not None: for fqn in filter_fqns: if fqn.startswith(new_prefix): break else: # DMP's named_parameter() will mess up the traversal with # ``named_children`` + `named_parameter(recurse=False)``. # This hack is a must to make the traversal work. # TODO: Remove this hack once DMP + FSDP is not supported. if ( submodule_name == "_fsdp_wrapped_module" or submodule_name == "_dmp_wrapped_module" ): warnings.warn( "An unexpected prefix is detected. This case " " should only happen when using DMP with FSDP. " f"prefix = {prefix}, " f"submodule_name = {submodule_name}" ) new_prefix = prefix elif submodule_name == "module": warnings.warn( "An unexpected prefix is detected. This case " " should only happen when DDP wraps the outer " " modules while FSDP wraps the inner ones." f"prefix = {prefix}, " f"submodule_name = {submodule_name}" ) new_prefix = prefix f(submodule, new_prefix, new_tree_level, *args, **kwargs) f(root_module, "", 0, *args, **kwargs) return return_fn(*args, **kwargs) @no_type_check def _assert_in_training_states( state: _FSDPState, training_states: List[TrainingState], ) -> None: """Asserts that FSDP is in the states ``_training_states``.""" # Raise a `ValueError` instead of using `assert` to ensure that these # logical assertions run even if `assert`s are disabled if state.training_state not in training_states: msg = ( f"expected to be in states {training_states} but current state is " f"{state.training_state}" ) # Print the error on rank 0 in case this is called in the backward pass if state.rank == 0: if isinstance(state, nn.Module): print(f"Asserting FSDP instance is: {state}") print(f"ERROR: {msg}") traceback.print_stack() raise ValueError(msg) def _get_root_modules(modules: Set[nn.Module]) -> Set[nn.Module]: """ Returns: Set[nn.Module]: The subset of ``modules`` that are root modules (i.e. parent-less) with respect to the modules in the set itself. In other words, these are the modules in ``modules`` that are not the child of any other module in ``modules``. """ root_modules: Set[nn.Module] = set() module_to_submodules = {module: set(module.modules()) for module in modules} for candidate_module in modules: is_root_module = True for module, submodules in module_to_submodules.items(): is_child_module = ( candidate_module is not module and candidate_module in submodules ) if is_child_module: is_root_module = False break if is_root_module: root_modules.add(candidate_module) return root_modules