# mypy: allow-untyped-defs import operator from functools import reduce from typing_extensions import deprecated import torch import torch._utils from torch.autograd.function import Function class Type(Function): @staticmethod @deprecated( "`torch.autograd._functions.Type` is deprecated as of PyTorch 2.1, " "please use `torch.tensor.to(dtype=dtype)` instead.", category=FutureWarning, ) # pyrefly: ignore [bad-override] def forward(ctx, i, dest_type): ctx.input_type = type(i) ctx.input_device = -1 if not i.is_cuda else i.get_device() return i.type(dest_type) @staticmethod # pyrefly: ignore [bad-override] def backward(ctx, grad_output): if ctx.input_device == -1: return grad_output.type(ctx.input_type), None else: with torch.accelerator.device_index(ctx.input_device): return grad_output.type(ctx.input_type), None # TODO: deprecate this class Resize(Function): @staticmethod # pyrefly: ignore [bad-override] def forward(ctx, tensor, sizes): ctx.sizes = sizes ctx.numel = reduce(operator.mul, sizes, 1) if tensor.numel() != ctx.numel: raise RuntimeError( ( "requested resize to {} ({} elements in total), " "but the given tensor has a size of {} ({} elements). " "autograd's resize can only change the shape of a given " "tensor, while preserving the number of elements. " ).format( "x".join(map(str, sizes)), ctx.numel, "x".join(map(str, tensor.size())), tensor.numel(), ) ) ctx.input_sizes = tensor.size() if tensor.is_quantized: tensor.copy_(tensor) return tensor.contiguous().view(*sizes) if tensor.is_contiguous(): result = tensor.new(tensor).contiguous().view(*sizes) return result else: return tensor.contiguous().view(*sizes) @staticmethod # pyrefly: ignore [bad-override] def backward(ctx, grad_output): if grad_output.numel() != ctx.numel: raise AssertionError( f"Expected grad_output to have {ctx.numel} elements, but got {grad_output.numel()}" ) return grad_output.contiguous().view(ctx.input_sizes), None