#include #include #include #include #include #include #include // NB: This file is compiled even in CPU build (for some reason), so // make sure you don't include any CUDA only headers. using namespace at; // TODO: This might be generally helpful aliases elsewhere. at::Device CPUDevice() { return at::Device(at::kCPU); } at::Device CUDADevice(DeviceIndex index) { return at::Device(at::kCUDA, index); } // A macro so we don't lose location information when an assertion fails. #define REQUIRE_OPTIONS(device_, index_, type_, layout_) \ ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \ ASSERT_TRUE( \ options.device().index() == Device((device_), (index_)).index()); \ ASSERT_EQ(typeMetaToScalarType(options.dtype()), (type_)); \ ASSERT_TRUE(options.layout() == (layout_)) #define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \ ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \ ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \ ASSERT_EQ(tensor.type().scalarType(), (type_)); \ ASSERT_TRUE(tensor.type().layout() == (layout_)) TEST(TensorOptionsTest, ConstructsWellFromCUDATypes_CUDA) { auto options = CUDA(kFloat).options(); REQUIRE_OPTIONS(kCUDA, -1, kFloat, kStrided); options = CUDA(kInt).options(); REQUIRE_OPTIONS(kCUDA, -1, kInt, kStrided); options = getNonVariableType(Backend::SparseCUDA, kFloat).options(); REQUIRE_OPTIONS(kCUDA, -1, kFloat, kSparse); options = getNonVariableType(Backend::SparseCUDA, kByte).options(); REQUIRE_OPTIONS(kCUDA, -1, kByte, kSparse); options = CUDA(kFloat).options(/*device=*/5); REQUIRE_OPTIONS(kCUDA, 5, kFloat, kStrided); options = getNonVariableType(Backend::SparseCUDA, kFloat).options(/*device=*/5); REQUIRE_OPTIONS(kCUDA, 5, kFloat, kSparse); } TEST(TensorOptionsTest, ConstructsWellFromCUDATensors_MultiCUDA) { auto options = empty(5, device(kCUDA).dtype(kDouble)).options(); REQUIRE_OPTIONS(kCUDA, 0, kDouble, kStrided); options = empty(5, getNonVariableType(Backend::SparseCUDA, kByte)).options(); REQUIRE_OPTIONS(kCUDA, 0, kByte, kSparse); if (at::globalContext().getNumGPUs() > 1) { Tensor tensor; { DeviceGuard guard(CUDADevice(1)); tensor = empty(5, device(kCUDA)); } options = tensor.options(); REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided); { DeviceGuard guard(CUDADevice(1)); tensor = empty(5, device(kCUDA).layout(kSparse)); } options = tensor.options(); REQUIRE_OPTIONS(kCUDA, 1, kFloat, kSparse); } } TEST(OptionsGuardTest, TestFunctionality_MultiCUDA) { Tensor tensor; { OptionsGuard guard(device(kCUDA)); tensor = at::empty({10}); } REQUIRE_TENSOR_OPTIONS(kCUDA, 0, kFloat, kStrided); { OptionsGuard guard(device({kCUDA, 1})); tensor = at::empty({10}); } REQUIRE_TENSOR_OPTIONS(kCUDA, 1, kFloat, kStrided); { OptionsGuard guard(device(kCUDA).dtype(kInt)); tensor = at::empty({10}); } REQUIRE_TENSOR_OPTIONS(kCUDA, 0, kInt, kStrided); } TEST(OptionsGuardTest, DeviceGuardOptionsGuardInteraction_MultiCUDA) { Tensor tensor; { // Check that OptionsGuard respects any active device before construction. DeviceGuard guard(CUDADevice(1)); { OptionsGuard guard(device(kCUDA)); tensor = at::empty({10}); REQUIRE_TENSOR_OPTIONS(kCUDA, 1, kFloat, kStrided); { // Check that OptionsGuard respects any active device after // construction. DeviceGuard guard(CUDADevice(0)); tensor = at::empty({10}); REQUIRE_TENSOR_OPTIONS(kCUDA, 0, kFloat, kStrided); { OptionsGuard guard(device({kCUDA, 1})); tensor = at::empty({10}); REQUIRE_TENSOR_OPTIONS(kCUDA, 1, kFloat, kStrided); } } } } }