#include #include #include #include #include #include #include #include #include #include #define ASSERT_THROWS_WITH(statement, substring) \ try { \ (void)statement; \ ASSERT_TRUE(false); \ } catch (const std::exception& e) { \ ASSERT_NE(std::string(e.what()).find(substring), std::string::npos); \ } // Tests go in torch::jit namespace torch { namespace jit { TEST(LiteInterpreterTest, UpsampleNearest2d) { Module m("m"); m.define(R"( def forward(self, input: Tensor, scale:float): return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale)) )"); std::vector inputs; inputs.emplace_back(torch::rand({1, 3, 128, 128})); inputs.emplace_back(at::Scalar(2.0)); auto ref = m.forward(inputs); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; res = bc.forward(inputs); auto resd = res.toTensor(); auto refd = ref.toTensor(); ASSERT_TRUE(resd.equal(refd)); } TEST(LiteInterpreterTest, CheckAttrAccess) { Module m("m"); m.register_attribute("mobile_optimized", BoolType::get(), true); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); bool mobile_optimized = bc.attr("mobile_optimized", false).toBool(); AT_ASSERT(mobile_optimized); m.setattr("mobile_optimized", false); ss = std::stringstream(); m._save_for_mobile(ss); bc = _load_for_mobile(ss); mobile_optimized = bc.attr("mobile_optimized", false).toBool(); AT_ASSERT(!mobile_optimized); } TEST(LiteInterpreterTest, Add) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); // TODO: support default param val, which was pushed in // function schema's checkAndNormalizeInputs() // m.define(R"( // def add_it(self, x, b : int = 4): // return self.foo + x + b // )"); m.define(R"( def add_it(self, x): b = 4 return self.foo + x + b )"); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.run_method("add_it", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { auto bcinputs = inputs; res = bc.get_method("add_it")(bcinputs); } auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } TEST(LiteInterpreterTest, Conv) { auto s = std::getenv("PYTORCH_TEST_WITH_TSAN"); if (s && strcmp(s, "1") == 0) return; std::vector inputs; Module m("m"); m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false); m.register_parameter("bias", torch::ones({20}), false); m.define(R"( def forward(self, input): return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True) )"); inputs.push_back(torch::ones({1, 1, 28, 28})); auto outputref = m.forward(inputs).toTensor(); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { res = bc.get_method("forward")(inputs); } auto output = res.toTensor(); AT_ASSERT(outputref.dim() == output.dim()); AT_ASSERT( outputref[0][0][0][0].item() == output[0][0][0][0].item()); } TEST(LiteInterpreterTest, Inline) { Module m("m"); m.define(R"JIT( def foo1(self, x): return x + 1 def foo2(self, x): return self.foo1(x) + 2 def foo3(self, x): return self.foo2(x) + 3 )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("foo3")(inputs); AT_ASSERT(output.toTensor().item() == 7.0); } TEST(LiteInterpreterTest, Tuple) { Module m("m"); m.define(R"JIT( def foo(self, x): return (1, 2, x + 3) def forward(self, x): tuple = self.foo(x) return tuple )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("forward")(inputs); AT_ASSERT(output.toTuple()->elements()[1].toInt() == 2); } TEST(LiteInterpreterTest, Dict) { Module m("m"); m.define(R"JIT( def foo(self, x): return {"result": x + 1} def forward(self, x): d = self.foo(x) return d )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("forward")(inputs); AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2); } TEST(LiteInterpreterTest, PrimOverload) { /* // temporarily disabled script::Module m("m"); m.define(R"JIT( def forward(self, x): result = [1, 2] result.append(3) return result )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs({torch::ones({})}); auto output = bc.get_method("forward")(inputs); AT_ASSERT(output.toIntList()[2] == 3); */ } TEST(LiteInterpreterTest, Prim) { Module m("m"); m.define(R"JIT( def forward(self, x): return int(x) )JIT"); std::vector inputs; auto minput = 3.5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.run_method("forward", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { auto bcinputs = inputs; res = bc.get_method("forward")(bcinputs); } auto resi = res.toInt(); auto refi = ref.toInt(); AT_ASSERT(resi == refi); } TEST(LiteInterpreterTest, PrimScalar) { Module m("m"); m.define(R"JIT( def forward(self, x): return int(x.item()) )JIT"); std::vector inputs; auto minput = 3.5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.run_method("forward", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { auto bcinputs = inputs; res = bc.get_method("forward")(bcinputs); } auto resi = res.toInt(); auto refi = ref.toInt(); AT_ASSERT(resi == refi); } TEST(LiteInterpreterTest, LoadOrigJit) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def forward(self, x): b = 4 return self.foo + x + b )"); std::stringstream ss; m.save(ss); ASSERT_THROWS_WITH(_load_for_mobile(ss), "file not found"); } TEST(LiteInterpreterTest, WrongMethodName) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add(self, x): b = 4 return self.foo + x + b )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); ASSERT_THROWS_WITH(bc.get_method("forward")(inputs), "is not defined"); } TEST(LiteInterpreterTest, SetState) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def __getstate__(self): return self.foo + self.foo def __setstate__(self, a): self.foo = a def forward(self, x): b = 4 return self.foo + x + b )"); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); std::stringstream ms; m.save(ms); auto loaded_m = load(ms); auto ref = loaded_m.run_method("forward", minput); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { auto bcinputs = inputs; res = bc.get_method("forward")(bcinputs); } auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } class TorchBindLiteInterpreterTestStruct : public torch::jit::CustomClassHolder { public: std::string get(at::Tensor t) { std::stringstream ss; ss << "Hello! Your tensor has "; ss << t.numel(); ss << " elements!"; return ss.str(); } }; TEST(LiteInterpreterTest, BuiltinFunction) { script::Module m("m"); auto custom_class_obj = make_custom_class(); m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj); m.define(R"( def forward(self, x) -> str: return self.my_obj.get(x) )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); auto res = bc.get_method("forward")(std::vector{torch::zeros({3, 4})}); auto str = res.toStringRef(); std::string expected = "Hello! Your tensor has 12 elements!"; AT_ASSERT(str == expected); } TEST(LiteInterpreterTest, ModuleInfoBasic) { Module m("M"); m.define(R"JIT( def forward(self, x): return 2 * x )JIT"); std::stringstream ss; m._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); std::unordered_set module_debug_info_set; size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); if (!module_info.empty() && module_info != "") { module_debug_info_set.insert(module_info); } ++pc; } catch (const std::exception& e) { break; } } std::unordered_set expected_result({"top(M).forward"}); AT_ASSERT(module_debug_info_set == expected_result); } TEST(LiteInterpreterTest, NotSaveModuleInfo) { Module m("M"); m.define(R"JIT( def forward(self, x): return x + 5 )JIT"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); AT_ASSERT(module_info.empty() || module_info == ""); ++pc; } catch (const std::exception& e) { break; } } } TEST(LiteInterpreterTest, OneSubmoduleModuleInfo) { Module a("A"); a.define(R"JIT( def forward(self, x): return 2 * x + 5 )JIT"); Module b("B"); b.register_module("A0", a); b.define(R"JIT( def forward(self, x): return self.A0.forward(x) + 1 )JIT"); std::stringstream ss; b._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); std::unordered_set module_debug_info_set; size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); if (!module_info.empty() && module_info != "") { module_debug_info_set.insert(module_info); } ++pc; } catch (const std::exception& e) { break; } } std::unordered_set expected_result( {"top(B).forward", "top(B).A0(A).forward"}); AT_ASSERT(module_debug_info_set == expected_result); } TEST(LiteInterpreterTest, TwoSubmodulesModuleInfo) { Module a("A"); a.define(R"JIT( def forward(self, x): return x + 1 )JIT"); Module b("B"); b.define(R"JIT( def forward(self, x): return x + 2 )JIT"); Module c("C"); c.register_module("A0", a); c.register_module("B0", b); c.define(R"JIT( def forward(self, x): return self.A0.forward(x) + self.B0.forward(x) )JIT"); std::stringstream ss; c._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); std::unordered_set module_debug_info_set; size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); if (!module_info.empty() && module_info != "") { module_debug_info_set.insert(module_info); } ++pc; } catch (const std::exception& e) { break; } } std::unordered_set expected_result( {"top(C).forward", "top(C).A0(A).forward", "top(C).B0(B).forward"}); AT_ASSERT(module_debug_info_set == expected_result); } TEST(LiteInterpreterTest, SequentialModuleInfo) { Module a("A"); a.define(R"JIT( def forward(self, x): return x + 1 )JIT"); Module b("B"); b.define(R"JIT( def forward(self, x): return x + 2 )JIT"); Module c("C"); c.register_module("A0", a); c.register_module("B0", b); c.define(R"JIT( def forward(self, x): return self.A0.forward(self.B0.forward(x)) )JIT"); std::stringstream ss; c._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); std::unordered_set module_debug_info_set; size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); if (!module_info.empty() && module_info != "") { module_debug_info_set.insert(module_info); } ++pc; } catch (const std::exception& e) { break; } } std::unordered_set expected_result( {"top(C).A0(A).forward", "top(C).B0(B).forward"}); AT_ASSERT(module_debug_info_set == expected_result); } TEST(LiteInterpreterTest, HierarchyModuleInfo) { Module a("A"); a.define(R"JIT( def forward(self, x): return x + 1 )JIT"); Module b("B"); b.register_module("A0", a); b.define(R"JIT( def forward(self, x): return self.A0.forward(x) + 1 )JIT"); Module c("C"); c.register_module("B0", b); c.define(R"JIT( def forward(self, x): return self.B0.forward(x) + 1 )JIT"); std::stringstream ss; c._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); std::unordered_set module_debug_info_set; size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); if (!module_info.empty() && module_info != "") { module_debug_info_set.insert(module_info); } ++pc; } catch (const std::exception& e) { break; } } // There are 3 module information strings here. // "top(C).forward": for the add operator in top. // "top(C).B0(B).forward": for the add operator in B0. // "top(C).B0(B).A0(A).forward": for the add operator in A0. std::unordered_set expected_result( {"top(C).forward", "top(C).B0(B).forward", "top(C).B0(B).A0(A).forward"}); AT_ASSERT(module_debug_info_set == expected_result); } TEST(LiteInterpreterTest, DuplicatedClassTypeModuleInfo) { Module a("A"); a.define(R"JIT( def forward(self, x): return x + 5 )JIT"); Module b("B"); b.register_module("A0", a); b.register_module("A1", a); b.define(R"JIT( def forward(self, x): return self.A0.forward(x) + self.A1.forward(x) )JIT"); std::stringstream ss; b._save_for_mobile(ss, {}, true); mobile::Module bc = _load_for_mobile(ss); std::unordered_set module_debug_info_set; size_t pc = 0; while (true) { try { std::string module_info = bc.get_forward_method_debug_info(pc); if (!module_info.empty() && module_info != "") { module_debug_info_set.insert(module_info); } ++pc; } catch (const std::exception& e) { break; } } // The current approach is not able to distinguish between A0 and A1, // which have the same class type. Hence, it only records module // information for A1. std::unordered_set expected_result( {"top(B).forward", "top(B).A1(A).forward"}); AT_ASSERT(module_debug_info_set == expected_result); } TEST(LiteInterpreterTest, Eval) { std::vector inputs; Module m("m"); m.define(R"( def __init__(self, x): self.training = True def forward(self, input): return torch.dropout(input, 1.0, self.training) )"); inputs.push_back(torch::ones({1, 1, 28, 28})); m.eval(); auto outputref = m.forward(inputs).toTensor(); // save m in training mode to make sure that mobile eval() will correctly // change back to eval mode m.train(); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); bc.eval(); IValue res; for (int i = 0; i < 3; ++i) { res = bc.get_method("forward")(inputs); } auto output = res.toTensor(); AT_ASSERT(outputref.dim() == output.dim()); AT_ASSERT( outputref[0][0][0][0].item() == output[0][0][0][0].item()); } TEST(LiteInterpreterTest, FindWrongMethodName) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add(self, x): b = 4 return self.foo + x + b )"); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); ASSERT_TRUE(bc.find_method("forward") == c10::nullopt); } TEST(LiteInterpreterTest, FindAndRunMethod) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add_it(self, x): b = 4 return self.foo + x + b )"); std::vector inputs; auto minput = 5 * torch::ones({}); inputs.emplace_back(minput); auto ref = m.get_method("add_it")(inputs); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res; for (int i = 0; i < 3; ++i) { auto bcinputs = inputs; auto method = bc.find_method("add_it"); AT_ASSERT(method != c10::nullopt); res = (*method)(std::move(bcinputs)); } auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } TEST(LiteInterpreterTest, RunMethodVariadic) { Module m("m"); m.register_parameter("foo", torch::ones({}), false); m.define(R"( def add_three(self, x, y): return self.foo + x + y )"); std::vector inputs; auto inputx = 5 * torch::ones({}); auto inputy = 4 * torch::ones({}); auto ref = m.run_method("add_three", inputx, inputy); std::stringstream ss; m._save_for_mobile(ss); mobile::Module bc = _load_for_mobile(ss); IValue res = bc.run_method("add_three", inputx, inputy); auto resd = res.toTensor().item(); auto refd = ref.toTensor().item(); AT_ASSERT(resd == refd); } namespace { static auto reg = torch::class_( "_TorchScriptTesting", "_LiteInterpreterTest") .def("get", &TorchBindLiteInterpreterTestStruct::get) .def_pickle( // __getattr__ [](const c10::intrusive_ptr& self) -> int64_t { return 0; }, // __setattr__ [](int64_t state) { return c10::make_intrusive(); }); } // namespace } // namespace jit } // namespace torch