## @package core # Module caffe2.python.core from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple, OrderedDict, defaultdict from past.builtins import basestring from future.utils import viewitems, viewkeys, viewvalues from itertools import chain from six import binary_type, string_types, text_type from caffe2.proto import caffe2_pb2 from caffe2.python import scope, utils, workspace from caffe2.python.control_ops_grad import \ gen_do_gradient, gen_if_gradient, gen_while_gradient import caffe2.python._import_c_extension as C import copy import pickle import numpy as np import sys import traceback import os # Mac os specific message if (sys.platform == 'darwin' and 'leveldb' in C.registered_dbs()): print('If you are using homebrew leveldb on a Mac OS, you might see an ' 'error warning you that malloc_zone_unregister() failed. This is ' 'not a caffe2 issue but is due to the homebrew leveldb having an ' 'incompatible memory allocator. It does not affect usage.') # Convenience redirections to functions inside scope. DeviceScope = scope.DeviceScope NameScope = scope.NameScope # Bring datatype enums to the main namespace class DataType: pass def _InitDataType(): for name, value in caffe2_pb2.TensorProto.DataType.items(): setattr(DataType, name, value) _InitDataType() def _GetRegisteredOperators(): return set(workspace.RegisteredOperators()) _REGISTERED_OPERATORS = _GetRegisteredOperators() def RefreshRegisteredOperators(): global _REGISTERED_OPERATORS _REGISTERED_OPERATORS = _GetRegisteredOperators() _GLOBAL_INIT_ARGS = [] def GlobalInit(args): _GLOBAL_INIT_ARGS.extend(args[1:]) C.global_init(args) def GetGlobalInitArgs(): return _GLOBAL_INIT_ARGS[:] def IsOperator(op_type): return IsOperatorWithEngine(op_type, engine='DEFAULT') def IsOperatorWithEngine(op_type, engine): return C.op_registry_key(op_type, engine) in _REGISTERED_OPERATORS def DeviceOption( device_type, cuda_gpu_id=0, random_seed=None, node_name=None, numa_node_id=None, extra_info=None, ): option = caffe2_pb2.DeviceOption() option.device_type = device_type option.cuda_gpu_id = cuda_gpu_id if node_name is not None: option.node_name = node_name if random_seed is not None: option.random_seed = random_seed if numa_node_id is not None: assert device_type == caffe2_pb2.CPU option.numa_node_id = numa_node_id if extra_info is not None: option.extra_info.extend(extra_info) return option def device_option_equal(opt1, opt2, ignore_node_name=True, ignore_random_seed=True): if not opt1 or not opt2: return opt1 == opt2 if not ignore_node_name and opt1.node_name != opt2.node_name: return False if not ignore_random_seed and opt1.random_seed != opt2.random_seed: return False if not opt1.device_type or not opt2.device_type: # At least one option is for CPU, check if both are for CPU. return not opt1.device_type and not opt2.device_type return opt1.cuda_gpu_id == opt2.cuda_gpu_id def InferBlobDevices(net): ''' Compute mapping from parameters to devices by looking at the device option of the op that creates the blob has ''' mapping = {} for op in net.Proto().op: op_device = op.device_option if op_device is None: op_device = caffe2_pb2.DeviceOption(caffe2_pb2.CPU) # TODO: T18892922, use device annotations for b in op.output: mapping[b] = op_device return mapping def InferOpBlobDevicesAsDict(op): input_dev_list, output_dev_list = InferOpBlobDevices(op) input_dict = { op.input[i]: input_dev_list[i] for i in range(len(op.input)) } output_dict = { op.output[i]: output_dev_list[i] for i in range(len(op.output)) } return input_dict, output_dict def InferOpBlobDevices(op): device_info = C.infer_op_input_output_device(op.SerializeToString()) input_info = [] output_info = [] for dev_str in device_info[0]: device_option = caffe2_pb2.DeviceOption() device_option.ParseFromString(dev_str) input_info.append(device_option) for dev_str in device_info[1]: device_option = caffe2_pb2.DeviceOption() device_option.ParseFromString(dev_str) output_info.append(device_option) return input_info, output_info def InferOpDeviceAsBlobDevices(op): op_dev = op.device_option if op.device_option else caffe2_pb2.DeviceOption() input_dev = [op_dev] * len(op.input) output_dev = [op_dev] * len(op.output) return input_dev, output_dev GradientSlice = namedtuple('GradientSlice', ['indices', 'values']) class BlobReference(object): """A wrapper around a blob in a net. BlobReference gives us a way to refer to the network that the blob is generated from. Note that blobs are, essentially, just strings in the current workspace. """ def __init__(self, name, net=None): """Initializes a blob reference. Note that this does not prepends the namescope. If needed, use ScopedBlobReference() to prepend the existing namespace. """ if isinstance(name, string_types): self._name = name elif isinstance(name, binary_type): self._name = name.decode('utf-8') else: self._name = str(name) self._from_net = net # meta allows helper functions to put whatever metainformation needed # there. self.meta = {} def __hash__(self): return hash(self._name) def __eq__(self, other): if isinstance(other, string_types): return self._name == other elif isinstance(other, binary_type): return self._name == other.decode('utf-8') elif isinstance(other, BlobReference): return self._name == other._name else: return False def __ne__(self, other): return not(self == other) def __str__(self): return self._name def __repr__(self): return 'BlobReference("{}")'.format(self._name) def __add__(self, other): if not isinstance(other, string_types): raise RuntimeError('Cannot add BlobReference to a non-string.') return BlobReference(self._name + other, self._from_net) def __radd__(self, other): if not isinstance(other, string_types): raise RuntimeError('Cannot add a non-string to BlobReference.') return BlobReference(other + self._name, self._from_net) def Net(self): return self._from_net def GetNameScope(self): return self._name[:self._name.rfind(scope._NAMESCOPE_SEPARATOR) + 1] def _CreateAndAddToNet(self, op_type, inputs=None, *args, **kwargs): """Internal function that routes the operator generation to the network's __getattr__ function. """ inputs = [] if inputs is None else inputs if isinstance(inputs, BlobReference) or isinstance(inputs, string_types): inputs = [inputs] # add self to the input list. inputs.insert(0, self) return self._from_net.__getattr__(op_type)(inputs, *args, **kwargs) def __getattr__(self, op_type): """A wrapper allowing one to initiate operators from a blob reference. Example: for a blob reference b that comes from network n, doing b.Relu(...) is equivalent to doing net.Relu([b], ...) """ if op_type.startswith('__'): raise AttributeError('Attribute {} not found.'.format(op_type)) if self._from_net is None: raise RuntimeError( 'You cannot use a blob reference that does not have a net ' 'source to create operators. Create the operator from an ' 'explicit net object.') if not IsOperator(op_type): raise RuntimeError( 'Method ' + op_type + ' is not a registered operator.' + ' Did you mean: [' + ",".join(workspace.C.nearby_opnames(op_type)) + ']' ) return lambda *args, **kwargs: self._CreateAndAddToNet( op_type, *args, **kwargs) def __dir__(self): additional_methods = [ op for op in _REGISTERED_OPERATORS if '_ENGINE_' not in op or '_ENGINE_CUDNN' in op] return sorted(set(chain( dir(type(self)), viewkeys(self.__dict__), additional_methods ))) def ScopedName(name): """prefix the name with the current scope.""" if isinstance(name, binary_type): name = name.decode('ascii') return scope.CurrentNameScope() + name def ScopedBlobReference(name, *args, **kwargs): """Returns a blob reference with scope prefixed.""" return BlobReference(ScopedName(name), *args, **kwargs) def _RectifyInputOutput(blobs, net=None): """A helper function to rectify the input or output of the CreateOperator interface. """ if isinstance(blobs, string_types) or isinstance(blobs, binary_type): # If blobs is a single string, prepend scope.CurrentNameScope() # and put it as a list. # TODO(jiayq): enforce using BlobReference instead of raw strings. return [ScopedBlobReference(blobs, net=net)] elif type(blobs) is BlobReference: # If blob is a BlobReference, simply put it as a list. return [blobs] elif type(blobs) in (list, tuple): # If blob is a list, we go through it and type check. rectified = [] for blob in blobs: if isinstance(blob, string_types) or isinstance(blob, binary_type): rectified.append(ScopedBlobReference(blob, net=net)) elif type(blob) is BlobReference: rectified.append(blob) else: raise TypeError( "I/O blob #{} of unsupported type: {} of type {}" .format(len(rectified), str(blob), type(blob))) return rectified else: raise TypeError( "Unknown input/output type: %s of type %s." % (str(blobs), type(blobs)) ) def CreateOperator( operator_type, inputs, outputs, name='', control_input=None, device_option=None, arg=None, engine=None, **kwargs ): """A function wrapper that allows one to create operators based on the operator type. The type should be a string corresponding to an operator registered with Caffe2. """ operator = caffe2_pb2.OperatorDef() if (os.environ.get('CAFFE2_DEBUG')): stack = traceback.format_stack() operator.debug_info = "".join(stack[:-1]) operator.type = operator_type operator.name = name # Add rectified inputs and outputs inputs = _RectifyInputOutput(inputs) outputs = _RectifyInputOutput(outputs) operator.input.extend([text_type(i) for i in inputs]) operator.output.extend([text_type(o) for o in outputs]) if control_input: control_input = _RectifyInputOutput(control_input) operator.control_input.extend([text_type(i) for i in control_input]) # Set device option: # (1) If device_option is explicitly set, use device_option. # (2) If not, but scope.CurrentDeviceScope() is set, # then we use scope.CurrentDeviceScope(). # (3) Otherwise, do not set device option. if device_option is not None: operator.device_option.CopyFrom(device_option) elif scope.CurrentDeviceScope() is not None: operator.device_option.CopyFrom(scope.CurrentDeviceScope()) if engine is not None: operator.engine = engine # random seed is defined in the device option, so we need to do special # care. if 'random_seed' in kwargs: operator.device_option.random_seed = kwargs['random_seed'] del kwargs['random_seed'] # Add given arguments that do not need parsing if arg is not None: operator.arg.extend(arg) # Add all other arguments for key, value in viewitems(kwargs): if value is not None: operator.arg.add().CopyFrom(utils.MakeArgument(key, value)) if workspace.IsImmediate(): workspace.RunOperatorImmediate(operator) return operator def _RegisterPythonImpl( f, grad_f=None, python_func_type=None, pass_workspace=False ): if python_func_type: func = python_func_type(f) f = func.forward grad_f = func.backward else: if isinstance(f, tuple): f = f[0](*f[1], **f[2]) if isinstance(grad_f, tuple): grad_f = grad_f[0](*grad_f[1], **grad_f[2]) token = C.register_python_op(f, pass_workspace, '') if grad_f: C.register_python_gradient_op(token, grad_f) return token def CreatePythonOperator( f, inputs, outputs, grad_f=None, pass_workspace=False, python_func_type=None, *args, **kwargs ): """ `f` should have a signature (inputs, outputs) If `pass_workspace` is True, the signature is changed to (inputs, outputs, workspace) where `workspace` is the workspace the op is going to run on. This is potentially dangerous (as the op can manipulate the workspace directly), use on your own risk. """ kwargs["token"] = _RegisterPythonImpl( f, grad_f, python_func_type, pass_workspace=pass_workspace ) return CreateOperator("Python", inputs, outputs, *args, **kwargs) def GetIndexFromGradientList(g_list, name): """A helper function to get the index from a gradient list, None if not matching.""" for i, g in enumerate(g_list): if g == name: return i elif type(g) is GradientSlice: if (g.indices == name or g.values == name): return i return None OpSSA = namedtuple('OpSSA', ['op', 'in_versions', 'out_versions']) GradGenMeta = namedtuple('GradGenMeta', ['grad_op', 'idx', 'gradient']) SparseGradGenMeta = namedtuple('SparseGradGenMeta', [ 'grad_op_indices', 'idx_indices', 'grad_op_values', 'idx_values', 'gradient', ]) class IR(object): """A simple IR class to keep track of all intermediate representations used in the gradient computation. """ def __init__(self, operators): # The IR class holds multiple metadata from the forward pass: # a) ssa: a list of [op, in_versions, out_versions] recording the # input and the output version of each operator, similar # to a normal SSA form. # b) input_usages: a dictionary specifying for each blob and # each of its version, how many times it is used as input for another # op. # c) frontier: maintaining the current versions of the blobs # we are having in the workspace, after the execution of all the ops # added to the IR so far. This is useful because if a gradient is # trying to access an earlier version of a blob, we can sanity check # that it is no longer there, and thus throw an error. # d) gradient_frontier: maps the names of blobs to its version that the # gradient corresponds to. # e) gradient_generators: for each blob and each of its version, maps to # a list of operators that generates its gradient together with the # gradient name. self.ssa = [] self.input_usages = defaultdict(lambda: defaultdict(list)) self.frontier = defaultdict(int) self.gradient_frontier = {} self.gradient_generators = defaultdict(lambda: defaultdict(list)) self.out_version_history = defaultdict(list) self.in_version_history = defaultdict(list) for op in operators: self.Play(op) self.SanityCheck(operators) def SanityCheck(self, operators): # Validate StopGradient usage by checking that StopGradient's output # is actually passed forward for op in operators: if op.type == 'StopGradient': if op.output[0] not in self.input_usages: raise ValueError("""StopGradient's output '{}' is orphan. You typically want to specify same input and output for StopGradient. Op:\n\n{}""".format(op.output[0], str(op))) def Play(self, op): """"Adds an op to the current IR, and update the internal states to reflect the blobs and versions after the execution of the op. """ # For input, they are the current version in the dict. in_versions = {} for s in op.input: in_versions[s] = self.frontier[s] self.input_usages[s][self.frontier[s]].append(len(self.ssa)) self.in_version_history[s].append((op, self.frontier[s])) # For output, they are the current version plus one. If this is a # newly created blob, its version starts with zero. out_versions = {} for s in op.output: if s in self.frontier: self.frontier[s] += 1 out_versions[s] = self.frontier[s] self.out_version_history[s].append((op, self.frontier[s])) # Add to SSA for bookkeeping. self.ssa.append(OpSSA(op, in_versions, out_versions)) def CheckGradientOperatorInput( self, grad_op_input, g_output, fwd_op_idx, locally_generated_blobs): """Checks if the gradient operators can be correctly carried out.""" forward_op, in_versions, out_versions = self.ssa[fwd_op_idx] original_index = GetIndexFromGradientList(g_output, grad_op_input) # Functions to generate debug help for version-mismatches def versionMismatchInfoOut(name): s = "DEBUG HELP:\n" s += "Maybe you use same output blob twice for different ops?\n" s += "== Version history of blob [{}]\n".format(name) for (op, vers) in self.out_version_history[name]: s += "Version (out) {} <-- {}".format(vers, op) s += "\n" return s def versionMismatchInfoIn(name): s = "DEBUG HELP:\n" s += "Maybe the blob was overwritten by another op?\n" s += "== Version history of blob [{}]\n".format(name) for (op, vers) in self.in_version_history[name]: s += "version (in) {} <-- {}".format(vers, op) s += "\n" return s # If it is a dense or sparse gradient name, it should match the # version of the corresponding output. if original_index is not None: original_name = forward_op.output[original_index] if (out_versions[original_name] != self.gradient_frontier[original_name]): raise RuntimeError( 'Gradient name "%s" is expected to correspond ' 'to version %d of "%s", but currently we have ' 'version %d.\n\n' % ( grad_op_input, out_versions[original_name], original_name, self.gradient_frontier[original_name]) + versionMismatchInfoOut(original_name)) # If it is an output name, the current version should match the # version when the operator was run. elif grad_op_input in out_versions: if self.frontier[grad_op_input] != out_versions[grad_op_input]: raise RuntimeError( 'Gradient operator needs output "%s" at version' ' %d, but currently we have version %d.\n\n' % ( grad_op_input, out_versions[grad_op_input], self.frontier[grad_op_input] ) + versionMismatchInfoOut(grad_op_input) ) # If it is an input name, the current version should match the # version when the operator was run. elif grad_op_input in in_versions: if (self.frontier[grad_op_input] != in_versions[grad_op_input]): raise RuntimeError( 'Gradient operator needs input "%s" at version ' '%d, but currently we have version %d.\n\n' % ( grad_op_input, in_versions[grad_op_input], self.frontier[grad_op_input] ) + versionMismatchInfoIn(grad_op_input) ) # If it is none of the above, it should be a blob that is # generated locally by one of the previous gradient operators. else: if grad_op_input not in locally_generated_blobs: raise RuntimeError( 'Blob name "%s" not in the scope of operator: ' '%s\nand is not generated by any of the local ' 'gradient operators.' % (grad_op_input, str(forward_op)) ) def AppendSparseGenerators(self, sparse_generators): # merge indices and values generators for sparse gradients for name, input_generators in viewitems(sparse_generators): for version, generators in viewitems(input_generators): if len(generators) == 1: # either indices or values are generated (but not both) generator = generators[0] else: # both indices and values are generated assert(len(generators) == 2) op1_i, idx1_i, op1_v, idx1_v, g1 = generators[0] op2_i, idx2_i, op2_v, idx2_v, g2 = generators[1] assert(g1 == g2) assert(op1_i is None or op2_i is None) assert(op1_v is None or op2_v is None) assert(idx1_i == 0 or idx2_i == 0) assert(idx1_v == 0 or idx2_v == 0) generator = SparseGradGenMeta( op1_i or op2_i, idx1_i + idx2_i, op1_v or op2_v, idx1_v + idx2_v, g1) self.gradient_generators[name][version].append(generator) def BuildGradientGenerators( # NOQA self, fwd_op_idx, gradient_ops, g_output, g_input): """Updates gradient_generators and gradient_frontier""" forward_op, in_versions, out_versions = self.ssa[fwd_op_idx] locally_generated_blobs = [] sparse_generators = defaultdict(lambda: defaultdict(list)) for grad_op in gradient_ops: # (1) check that inputs are valid for s in grad_op.input: self.CheckGradientOperatorInput( s, g_output, fwd_op_idx, locally_generated_blobs) # (2) add outputs to the locally generated blobs # If an output corresponds to the gradient of an input, we also # record it to gradient_generators locally_generated_blobs.extend([str(s) for s in grad_op.output]) for i, output in enumerate(grad_op.output): input_index = GetIndexFromGradientList(g_input, output) if input_index is not None: input_name = forward_op.input[input_index] input_version = in_versions[input_name] g = g_input[input_index] if type(g) is GradientSlice: # the output corresponds either to the indices or the # values of the sparse gradient. In either case we # create a (partial) SparseGradGenMeta. If necessary, # we'll merge indices and values generators # corresponding to the same gradient in step (3) if g.indices == output: m = SparseGradGenMeta(grad_op, i, None, 0, g) else: assert(g.values == output) m = SparseGradGenMeta(None, 0, grad_op, i, g) sparse_generators[input_name][input_version].append(m) else: self.gradient_generators[input_name][input_version] \ .append(GradGenMeta( grad_op, i, g)) # (3) merge indices and values generators for sparse gradients, and # add them to gradient_generators self.AppendSparseGenerators(sparse_generators) # (4) for ops (e.g., Add, Sum, Sub) which have gradient outputs directly # passed from inputs (not computed from gradient ops), we create an # GradGenMeta with None grad_op and idx so that the gradient_generators # knows where the gradients are coming from. This is needed for creating # Sum op to accumulate the gradients from multiple parents. for input_index, g in enumerate(g_input): input_name = forward_op.input[input_index] input_version = in_versions[input_name] if not g: continue if type(g) is GradientSlice: if str(g.indices) not in locally_generated_blobs and \ str(g.values) not in locally_generated_blobs: self.gradient_generators[input_name][input_version].append( SparseGradGenMeta(None, 0, None, 0, g)) else: if str(g) not in locally_generated_blobs: self.gradient_generators[input_name][input_version].append( GradGenMeta(None, 0, g)) # Finally, for the gradients specified in g_input, we update the # gradient frontier to reflect the input versions that the gradients # correspond to. for i, g in enumerate(g_input): if g is not None: input_name = forward_op.input[i] input_version = in_versions[input_name] self.gradient_frontier[input_name] = input_version def _GetSumOpOutputName(self, generator, input_name): def remove_suffix(s, suffix): if s.endswith(suffix): return s[:-len(suffix)] return s for g in generator: if type(g) is GradGenMeta: grad_op, idx, _ = g if grad_op: return grad_op.output[idx] else: assert(type(g) is SparseGradGenMeta) op_i, idx_i, op_v, idx_v, _ = g if op_i: return remove_suffix(op_i.output[idx_i], '_indices') if op_v: return remove_suffix(op_v.output[idx_v], '_values') return input_name + '_grad' def _SetSumOpsDeviceOption(self, sum_ops, generators): # we already checked that device options are consistent so we can just # use the first one we find for generator in generators: grad_op = generator.grad_op if type(generator) is GradGenMeta \ else generator.grad_op_values or generator.grad_op_indices if grad_op: if grad_op.HasField('device_option'): for op in sum_ops: op.device_option.CopyFrom(grad_op.device_option) break def _DisambiguateGradOpOutput(self, grad_op, idx, cnt): grad_op.output[idx] = ( '_' + grad_op.output[idx] + '_autosplit_{}'.format(cnt)) return grad_op.output[idx], cnt + 1 def _CheckSumOpsConflict(self, out_base_name, g): if str(out_base_name) == str(g): # TODO not sure what this message really means raise RuntimeError( 'The gradient output of empty gradient op can not ' 'be the same as the normal name of the current ' 'input gradient.') def _MakeDenseSumOps(self, generators, out_base_name): sum_op_input = [] cnt = 0 assert len(generators) > 1 first_grad_op = True for generator in generators: grad_op, idx, g = generator assert(type(g) is not GradientSlice) if grad_op: if first_grad_op: first_grad_op = False out = grad_op.output[idx] else: out, cnt = self._DisambiguateGradOpOutput(grad_op, idx, cnt) sum_op_input.append(out) else: self._CheckSumOpsConflict(out_base_name, g) sum_op_input.append(str(g)) if out_base_name in sum_op_input: # Sum inplace mode works only for the first input # So we do a swap idx = sum_op_input.index(out_base_name) sum_op_input[0], sum_op_input[idx] = ( sum_op_input[idx], sum_op_input[0] ) sum_ops = [CreateOperator( "Sum", [BlobReference(x) for x in sum_op_input], BlobReference(out_base_name))] return sum_ops, out_base_name def _MakeSparseSumOps(self, generators, out_base_name): indices_concat_input = [] values_concat_input = [] cnt_i = 0 cnt_v = 0 for generator in generators: assert(type(generator) is SparseGradGenMeta) op_i, idx_i, op_v, idx_v, g = generator if op_i: out, cnt_i = self._DisambiguateGradOpOutput(op_i, idx_i, cnt_i) indices_concat_input.append(out) else: self._CheckSumOpsConflict(out_base_name, g.indices) indices_concat_input.append(g.indices) if op_v: out, cnt_v = self._DisambiguateGradOpOutput(op_v, idx_v, cnt_v) values_concat_input.append(out) else: self._CheckSumOpsConflict(out_base_name, g.values) values_concat_input.append(g.values) indices_concat_output = out_base_name + '_indices_concat' indices_concat_split = out_base_name + '_indices_concat_split' values_concat_output = out_base_name + '_values_concat' values_concat_split = out_base_name + '_values_concat_split' # Sum the given sparse representations by simply concatenating the # indices (resp. values) tensors together. We don't do any deduplication # of indices at this point. This will be done as needed before the # optimizer is called sum_ops = [ CreateOperator( "Concat", [BlobReference(x) for x in indices_concat_input], [BlobReference(x) for x in [indices_concat_output, indices_concat_split]], axis=0 ), CreateOperator( "Concat", [BlobReference(x) for x in values_concat_input], [BlobReference(x) for x in [values_concat_output, values_concat_split]], axis=0 ), ] sum_op_output = GradientSlice( indices=indices_concat_output, values=values_concat_output, ) return sum_ops, sum_op_output def _MakeSumOps(self, input_name, input_version): generators = self.gradient_generators[input_name][input_version] out_base_name = self._GetSumOpOutputName(generators, input_name) types = list(set(type(x) for x in generators)) assert(len(types) == 1) if types[0] is GradGenMeta: sum_ops, g = self._MakeDenseSumOps(generators, out_base_name) else: assert(types[0] is SparseGradGenMeta) sum_ops, g = self._MakeSparseSumOps(generators, out_base_name) self._SetSumOpsDeviceOption(sum_ops, generators) return sum_ops, g def _VerifyGradientGenerators(self, generator): # (1) check if all gradients are of the same type. Aggregating a mix of # sparse and dense gradients is not supported yet if len({type(g) for g in generator}) > 1: raise RuntimeError( 'Automatic aggregation of a mix of sparse and dense gradients ' 'is not supported yet') # If for all the operators that used the operator, none or only one # produced the gradient, then no additional sum needs to be carried # out. if len(generator) < 2: return False all_gradient_names = [] all_device_options = [] for g in generator: if type(g) is GradGenMeta: if g.grad_op: all_gradient_names.append(g.gradient) all_device_options.append(g.grad_op.device_option) else: assert(type(g) is SparseGradGenMeta) if g.grad_op_indices: all_device_options.append(g.grad_op_indices.device_option) if g.grad_op_values: all_device_options.append(g.grad_op_values.device_option) all_gradient_names.append(g.gradient.values) # Check if all grad op device options are the same. if len(all_device_options) >= 2 and not all( device_option_equal(d, all_device_options[0]) for d in all_device_options[1:]): raise RuntimeError('Unexpected behavior: not all grad ops ' 'have the same device option.') return True def DoGradientAccumulation(self, fwd_op_idx): """For each input name in the forward op, check if we will need to add gradient accumulation. If so, do gradient accumulation and return the list of gradient operators. The criteria for doing gradient accumulation is: (1) the specific input version has been used by multiple operators. (2) the current fwd_op_idx is the first to use that input, i.e. in the backward pass, is the last to optionally generate the gradient for the op. (3) For the operators that used the input, their gradient operators have generated more than 1 gradient. When accumulating operators, our current solution is to rename all the created gradients with an internal intermediate name, and then add a Sum() operator that adds up all the gradients. This may use more memory due to intermediate storage, but is usually the fastest approach as one can do one single sum for multiple intermediate gradients. """ forward_op, in_versions, out_versions = self.ssa[fwd_op_idx] additional_sum_ops = [] grad_map = {} for _i, input_name in enumerate(set(forward_op.input)): input_version = in_versions[input_name] input_usage = self.input_usages[input_name][input_version] if (len(input_usage) <= 1 or fwd_op_idx != input_usage[0]): # We do not need to do gradient accumulation yet. continue generator = self.gradient_generators[input_name][input_version] try: if not self._VerifyGradientGenerators(generator): continue except RuntimeError as err: raise RuntimeError( "Gradients for param ''{}'' failed to verify: {}".format( input_name, err ) ) # Finally, let's create the sum operator. sum_ops, g = self._MakeSumOps(input_name, input_version) additional_sum_ops.extend(sum_ops) grad_map[input_name] = g return additional_sum_ops, grad_map def _AppendAutoGradGenerator(self, y, grad, autograd_op): # Gradient here is not sparse as it was generated by # a ConstantFill operator. Autogeneration for sparse gradients is # not supported generator = GradGenMeta( autograd_op, 0 if autograd_op else None, str(grad)) self.gradient_generators[str(y)][self.frontier[str(y)]].append( generator) def _GetInitGradients(self, ys): input_to_grad = {} gradient_ops = [] for y, g in viewitems(ys): autograd_op = None if g is None: autograd_op = CreateOperator( "ConstantFill", [y], [str(y) + "_autogen_grad"], value=1.0) gradient_ops.append(autograd_op) g = autograd_op.output[0] # Since the C++ gradient registry does not have notion of # NameScopes, we will convert all references to strings. input_to_grad[str(y)] = ( GradientSlice(str(g[0]), str(g[1])) if isinstance(g, GradientSlice) else str(g)) # Autogenerated gradients are assumed to be provided for the last # input version if autograd_op is not None: self._AppendAutoGradGenerator(y, g, autograd_op) return input_to_grad, gradient_ops def _GenerateGradientsForForwardOp( self, forward_op_idx, input_to_grad): new_input_to_grad = {} gradient_ops = [] forward_op, in_versions, out_versions = self.ssa[forward_op_idx] g_output = list( input_to_grad.get(name, None) for name in forward_op.output) if not all(g is None for g in g_output) or ( forward_op.type == "ZeroGradient"): gradient_ops, g_input = GradientRegistry.GetGradientForOp( forward_op, g_output) # Check if the gradient operators are legal, and update # gradient_generators and gradient_frontier self.BuildGradientGenerators( forward_op_idx, gradient_ops, g_output, g_input) # Record the gradient map to all_input_to_grad. for name, grad in zip(forward_op.input, g_input): # Do not overwrite an existing gradient with a None # unless the input is also an output of the op, since # we update the blob version when blob is output of an # operator. if grad is not None or \ name not in input_to_grad or \ name in list(forward_op.output): new_input_to_grad[name] = grad return new_input_to_grad, gradient_ops def GetBackwardPass(self, ys): """Gets the backward pass that computes the derivatives of given blobs. Inputs: ys: a list or a dictionary specifying what blobs we want to compute derivatives of. If the input is a list, we will automatically generate their gradients with all-one values; if the input is a dictionary, for any dictionary entries that are not None, we will take the corresponding blobs as their gradients; for all those that are None, we will auto-fill them with 1. """ if isinstance(ys, list): ys = dict((y, None) for y in ys) elif not isinstance(ys, dict): raise TypeError("ys should either be a list or a dict.") # Set the gradient frontier with the initialized external # gradients. for y in viewkeys(ys): self.gradient_frontier[y] = self.frontier[y] self.input_usages[str(y)][self.frontier[str(y)]].append( len(self.ssa)) all_input_to_grad, all_gradient_ops = self._GetInitGradients(ys) # (2) Now, after having the virtual play above, we now play the ops # backwards, creating the gradients along the path. Note that although # we are playing it backwards, we cannot refer to variables that are # at a version older than current_versions because it is already been # overwritten. for forward_op_idx in reversed(range(len(self.ssa))): input_to_grad, gradient_ops = self._GenerateGradientsForForwardOp( forward_op_idx, all_input_to_grad) all_input_to_grad.update(input_to_grad) all_gradient_ops += gradient_ops # If there are multiple use blobs, do gradient accumulation. additional_sum_ops, grad_map = self.DoGradientAccumulation( forward_op_idx) # This line is so that if in an accumulation some of the operators # have not produced gradients, they still do not overwrite the # general all_input_to_grad map. all_input_to_grad.update(grad_map) all_gradient_ops += additional_sum_ops # (3) Post-processing. # After we have done computation for each op, we now have the gradient # operators ready. For the output map, we will convert everything to # BlobReferences for easier handling in python. all_input_to_grad_out = {} for key, val in viewitems(all_input_to_grad): if val is not None: if (isinstance(val, string_types) or isinstance(val, binary_type)): grad_out = BlobReference(val) else: grad_out = GradientSlice(BlobReference(val[0]), BlobReference(val[1])) all_input_to_grad_out[BlobReference(key)] = grad_out return all_gradient_ops, all_input_to_grad_out class GradientRegistry(object): """GradientRegistry holds the mapping from operators to their gradients.""" gradient_registry_ = {} @classmethod def RegisterGradient(cls, op_type): """A decorator for registering gradient mappings.""" def Wrapper(func): cls.gradient_registry_[op_type] = func return func return Wrapper @classmethod def _GetGradientForOpCC(cls, op_def, g_output): # TODO(tulloch) - Propagate GradientWrapper up through the stack. def from_untyped(grad): if grad is None: w = C.GradientWrapper() assert w.is_empty() return w try: (indices, values) = grad w = C.GradientWrapper() w.indices = indices w.values = values assert w.is_sparse() return w except ValueError: w = C.GradientWrapper() w.dense = grad assert w.is_dense() return w g_output = [from_untyped(grad) for grad in g_output] grad_defs_str, g_input = C.get_gradient_defs( op_def.SerializeToString(), g_output) def to_untyped(grad_wrapper): if grad_wrapper.is_empty(): return None if grad_wrapper.is_sparse(): return GradientSlice(grad_wrapper.indices, grad_wrapper.values) assert grad_wrapper.is_dense() return grad_wrapper.dense g_input = [to_untyped(grad_wrapper) for grad_wrapper in g_input] grad_defs = [] for grad_def_str in grad_defs_str: grad_def = caffe2_pb2.OperatorDef() grad_def.ParseFromString(grad_def_str) grad_defs.append(grad_def) return grad_defs, g_input @classmethod def GetGradientForOp(cls, op, g_output): try: gradient_ops, g_input = cls._GetGradientForOpCC(op, g_output) except Exception as e: # Not supported in C++; will try python registration next. if op.type in cls.gradient_registry_: gradient_ops, g_input = cls.gradient_registry_[op.type]( op, g_output ) else: raise Exception( "Exception when creating gradient for [{}]:{}.\nOp: \n{}". format(op.type, e, str(op)) ) if gradient_ops is None: return [], g_input if type(gradient_ops) is not list: gradient_ops = [gradient_ops] return gradient_ops, g_input @classmethod def GetBackwardPass(cls, operators, ys, ys_generate_gradient=False): """Gets the backward pass for the list of operators. Args: operators: a list of operators constituting the forward pass. ys: a list or a dictionary specifying what blobs we want to compute derivatives of. If the input is a list, we will automatically generate their gradients with all-one values; if the input is a dictionary, for any dictionary entries that are not None, we'll take the corresponding blobs as their gradients; for all those that are None, we will auto-fill them with 1. Returns: gradient_ops: a list of gradient operators to run. all_input_to_grads: a map from input to their corresponding gradients. """ ir = IR(operators) return ir.GetBackwardPass(ys) GradientRegistry.RegisterGradient('Do')(gen_do_gradient) GradientRegistry.RegisterGradient('If')(gen_if_gradient) GradientRegistry.RegisterGradient('While')(gen_while_gradient) def get_ssa(net, blob_versions=None): """ Given a net, return a structure containing the version of each input and output blob used by each operator. Args: net: either a Net or a NetDef blob_versions: (optional) map with current version number for given blob names. If not provided or blob not found, start from version 0. Returns: Tuple (ssa, blob_versions) ssa: list of tuples (versioned_inputs, versioned_outputs) for each op in the net. A versioned input is a tuple (blob_name, version). blob_versions: updated map with latest version of each blob found in the net. """ proto = net.Proto() if isinstance(net, Net) else net assert isinstance(proto, caffe2_pb2.NetDef) if blob_versions is None: blob_versions = {} if isinstance(net, list): return [get_ssa(n, blob_versions) for n in net], blob_versions for i in proto.external_input: if i not in blob_versions: blob_versions[str(i)] = 0 ssa = [] for op in proto.op: if not proto.external_input: for i in op.input: if i not in blob_versions: blob_versions[i] = 0 inputs = [(str(i), blob_versions.get(str(i), 0)) for i in op.input] for o in op.output: blob_versions[str(o)] = blob_versions.get(str(o), 0) + 1 outputs = [(str(o), blob_versions[str(o)]) for o in op.output] ssa.append((inputs, outputs)) return ssa, blob_versions def get_undefined_blobs(ssa): """ Given a ssa in the format produced by get_ssa(), return a set of blobs that are used before they are defined, which corresponds to inputs at version 0. """ undef_blobs = set() for inputs, _outputs in ssa: undef_blobs |= set(name for (name, ver) in inputs if ver == 0) return undef_blobs def get_output_producers(ssa): """ Given a ssa in the format produced by get_ssa(), returns a map from versioned blob into the operator index that produces that version of the blob. A versioned blob is a tuple (blob_name, version). """ producers = {} for i, (_inputs, outputs) in enumerate(ssa): for o in outputs: producers[o] = i return producers def get_op_ids_in_path(ssa, blob_versions, inputs, outputs): """ Given a ssa and blob_versions as produced by get_ssa(), returns the list of op indices that are necessary in order to generate the blobs in `outputs`, given blobs in `inputs`. Consider that the `inputs` are given in their latest version. """ inputs_set = set((str(i), blob_versions[str(i)]) for i in inputs) producers = get_output_producers(ssa) queue = [(str(o), blob_versions[str(o)]) for o in outputs] used_op_ids = set() while len(queue) > 0: o = queue.pop() if (o not in inputs_set) and (o in producers): op_id = producers[o] if op_id not in used_op_ids: used_op_ids |= {op_id} inputs, _ = ssa[op_id] queue.extend(inputs) return sorted(used_op_ids) def recurrent_network_op_remap(op, prefix, blob_remap): """ Parameters ---------- op : Caffe2 operator (RecurrentNetworkOp or RecurrentNetworkGradientOp). prefix: this argument is not used in this function, just for legacy support. blob_remap : Dictionary that represents the map from old blob name to new. Updates blob names in arguments of RecurrentNetworkOp and RecurrentNetworkGradientOp to conform to cloned input and output of both operators and also makes sure names of locally generated blobs in arguments have the same prefix as the input and output of the operators. """ def get_remapped_str(blob_str): if isinstance(blob_str, binary_type): blob_str = blob_str.decode('utf-8') return blob_remap.get(blob_str, blob_str).encode('utf-8') for argument in op.arg: if len(argument.strings) > 0: for i in range(len(argument.strings)): argument.strings[i] = get_remapped_str(argument.strings[i]) elif argument.name == 'timestep': argument.s = get_remapped_str(argument.s) elif argument.name.endswith('step_net'): # argument is a proto remap_proto(argument, blob_remap) def control_op_remap(op, prefix, blob_remap): net_arg_names = [] if op.type == "If": net_arg_names = ['then_net', 'else_net'] else: net_arg_names = ['loop_net', 'cond_net'] for argument in op.arg: if argument.name in net_arg_names: assert argument.n, \ "Expected non empty net in " + op.type + "'s " + argument.name + " argument" subnet = Net(argument.n) remapped_subnet = subnet.Clone( name=(subnet._net.name if subnet._net.name else '') + '_remapped', blob_remap=blob_remap) argument.n.CopyFrom(remapped_subnet.Proto()) DEFAULT_REMAP_FUNCS = { 'RecurrentNetwork': recurrent_network_op_remap, 'RecurrentNetworkGradient': recurrent_network_op_remap, 'If': control_op_remap, 'While': control_op_remap, } def remap_proto(argument, blob_remap): subnet = Net(argument.n) cloned_sub_net = subnet.Clone( 'cloned_sub_net', blob_remap, ) argument.n.CopyFrom(cloned_sub_net.Proto()) def clone_and_bind_net(net, name, prefix, blob_remap=None, inputs=None, keep_schema=True): """ Clone the given Net, binding its input schema to the given `inputs` record. Blob names defined by the net are prepended with the given `prefix`. Args: net: the net to clone name: the name of the new net prefix: the prefix to append to local blobs blob_remap: (optional) dict with additional blob name remapping. inputs: (optional) input record that will provide actual input values for the cloned net. Must be compatible with the net's input schema or be a strict superset of it keep_schema: by default (True), the original schema will be kept and remapped accordingly. otherwise, the schema will be set as inputs or left empty if inputs is not given. Returns: Tuple (cloned_net, blob_remap) clone_net: the cloned Net blob_remap: a map from original blob names into remapped blob names """ from caffe2.python import schema assert isinstance(net, Net) if blob_remap is None: blob_remap = {} if inputs is not None: assert isinstance(inputs, schema.Field) original = net.input_record() assert original is not None # TODO(azzolini): improve schema type checking diff = set(original.field_names()) - set(inputs.field_names()) assert len(diff) == 0, ( "Schemas don't match, extra fields {diff} found in the net {name}. " "original: {original}; inputs: {inputs}" .format( diff=diff, name=net.Name(), original=original.field_names(), inputs=inputs.field_names() ) ) original_mapping = dict(zip(original.field_names(), original.field_blobs())) for fn, fb in zip(inputs.field_names(), inputs.field_blobs()): if fn in original_mapping: blob_remap[str(original_mapping[fn])] = str(fb) proto = net.Proto() ssa, blob_versions = get_ssa(proto) undef_blobs = get_undefined_blobs(ssa) for blob in viewkeys(blob_versions): if blob in blob_remap: continue elif blob in undef_blobs: blob_remap[blob] = blob else: blob_remap[blob] = prefix + blob cloned_net = net.Clone(name, blob_remap, keep_schema=keep_schema) if not keep_schema and inputs: cloned_net.set_input_record(inputs) return cloned_net, blob_remap def _get_blob_ref(blob_name_or_ref): return ( blob_name_or_ref if isinstance(input, BlobReference) else BlobReference(blob_name_or_ref) ) def _recover_record_by_prefix(names, prefix=''): """ Tries to recover record by taking a subset of blob names with a given prefix name and interpreting them as schema column names """ from caffe2.python import schema column_names = [name[len(prefix):] for name in names if name.startswith(prefix)] if not column_names: return None return schema.from_column_list( column_names, col_blobs=[_get_blob_ref(prefix + name) for name in column_names]) class Net(object): _net_names_used = set() operator_registry_ = {} @staticmethod def current_prefix(): from caffe2.python.net_builder import NetBuilder builder = NetBuilder.current(required=False) return builder.name if builder else '' @staticmethod def _get_next_net_name(basename): name = basename = '/'.join( x for x in [Net.current_prefix(), basename] if x ) next_idx = 1 while name in Net._net_names_used: name = basename + '_' + str(next_idx) next_idx += 1 Net._net_names_used |= set([name]) return name def __init__(self, name_or_proto): """ Create a Net. Args: name_or_proto: If a NetDef is provided, clone it. Otherwise, create an empty net with the given name. """ self._input_record = None self._output_record = None # Register blobs so that it's guaranteed that different calls to # NextBlob/NextScopedBlob always return blobs with different names self._registered_blob_names = set() self._recreate_lookup_tables = False self._op_outputs = set() self._external_input_map = set() self._attr_dict = defaultdict(list) if type(name_or_proto) is caffe2_pb2.NetDef: proto = name_or_proto # We rae initializing a network by a NetDef. In this case, we will # initialize our network with the given netdef. self._net = caffe2_pb2.NetDef() self._net.CopyFrom(proto) existing_outputs = [list(op.output) for op in self._net.op] self._external_input_map.update(list(self._net.external_input)) # Set the next name index properly. existing_names = set( sum( [list(op.input) for op in self._net.op], [] ) + sum( existing_outputs, [] ) ) for outs in existing_outputs: self._op_outputs.update(outs) prefix_len = len(self._net.name + '_blob_') autogen_indices = [] for s in existing_names: if s.startswith(self._net.name + '_blob_'): try: autogen_indices.append(int(s[prefix_len])) except ValueError: pass if len(autogen_indices): self._next_name_index = max(autogen_indices) + 1 else: self._next_name_index = 0 name = self._net.name else: name = name_or_proto self._net = caffe2_pb2.NetDef() self._next_name_index = 0 # make sure that this net name hasn't been used before self._net.name = Net._get_next_net_name(name) def AppendNet(self, net, device_option=None): assert isinstance(net, Net) for i in net.Proto().external_input: if ( i not in self.Proto().external_input and i not in self._op_outputs ): self.Proto().external_input.append(i) self.Proto().external_output.extend( [ o for o in net.Proto().external_output if o not in self.Proto().external_output ] ) ops = net.Proto().op if device_option is not None: ops = [copy.deepcopy(op) for op in ops] map(lambda x: x.device_option.CopyFrom(device_option), ops) self._ExtendOps(ops) return self def LogInfo(self, *msg_or_blobs): for msg_or_blob in msg_or_blobs: if not isinstance(msg_or_blob, BlobReference): blob = self.GivenTensorStringFill( [], self.NextName('log'), shape=[], values=[msg_or_blob]) else: blob = msg_or_blob self.Print(blob, []) def add_attribute(self, name, obj): """ Add `obj` to the list of attributes in this net under the given `name`. Attributes are user-defined objects and have no pre-defined semantics. """ self._attr_dict[name].append(obj) def get_attributes(self, name): """ Returns the list of attributes in this net for a given `name`. Attributes are user-defined objects added with `add_attribute'. """ return self._attr_dict.get(name, []) def set_rand_seed(self, seed=100, sequence_seed=True, seed_on_op_def=False): """ Adds a random seed to each op in the net. If sequence_seed is set, the i-th op has rand_seed=`seed + i` If seed_on_op_def is set, the op rand_seed=hash(str(op)) sequence_seed and seed_on_op_def cannot be both set to True. """ assert not (sequence_seed and seed_on_op_def), ( 'sequence_seed and seed_on_op_def cannot be both set to True.') for i, op in enumerate(self.Proto().op): if sequence_seed: curr_seed = seed + i elif seed_on_op_def: curr_seed = hash(str(op) + str(seed)) % np.iinfo(np.uint32).max else: curr_seed = seed op.device_option.random_seed = curr_seed def Name(self): return self._net.name def __str__(self): return self.Name() def Const(self, array, blob_out=None, dtype=None): if isinstance(array, bool): return self.ConstantFill( [], blob_out or 1, dtype=DataType.BOOL, value=array) if dtype is None: array = np.array(array) else: array = np.array(array, dtype=dtype) def do_set(operator): return operator( [], blob_out or 1, shape=array.shape, values=array.flatten().tolist()) if array.dtype == np.int32: return do_set(self.GivenTensorIntFill) elif array.dtype == np.int64: return do_set(self.GivenTensorInt64Fill) elif array.dtype == np.str: return do_set(self.GivenTensorStringFill) elif array.dtype == np.bool: return do_set(self.GivenTensorBoolFill) else: return do_set(self.GivenTensorFill) def BlobIsDefined(self, blob): """ Returns true if the given BlobReference is produced as output of an operator in this net, or if it is provided as an external input. """ if self._recreate_lookup_tables: self._RecreateLookupTables() name = str(blob) return (name in self._op_outputs) or (name in self._external_input_map) def UsesBlob(self, blob): """ Returns true iff the given BlobReference is used by any operator or this net, or if it is one of the external inputs of the net. """ blob_name = str(blob) for op in self._net.op: for input in op.input: if input == blob_name: return True return blob_name in self._external_input_map def UsedBlobNames(self): """ Returns a set of blob names used in the net """ blob_names = set() for op in self._net.op: blob_names |= set(op.input) blob_names |= set(op.output) if self._net.external_input: blob_names |= set(self._net.external_input) if self._net.external_output: blob_names |= set(self._net.external_output) return blob_names def GetBlobRef(self, blob_name): """ Given the name of a blob produced by this net, return a BlobReference to it. If the blob is not produced by any op in this net, raises KeyError. """ blob_name = str(blob_name) if not self.BlobIsDefined(blob_name): raise KeyError('Net does not define blob %s' % blob_name) return BlobReference(blob_name, self) def Clone( self, name, blob_remap=None, op_id_mask=None, remap_funcs=None, keep_schema=True ): """ Clone this net. Args: name: name of the cloned net blob_remap: optional map with list of blob names to replace op_id_mask: optional list of operator indices to include in the cloned net. If not provided, all ops are included. """ orig_remap_funcs = {} if remap_funcs is None else remap_funcs # by default we want to put RecurrentNetworkOp and # RecurrentNetworkGradientOp into remap_funcs, as these two operators # also take blobs and proto into the arguments. remap_funcs = DEFAULT_REMAP_FUNCS.copy() remap_funcs.update(orig_remap_funcs) proto = self._net new_proto = caffe2_pb2.NetDef() new_proto.CopyFrom(proto) new_proto.name = name if blob_remap is None: blob_remap = {} if op_id_mask is None: op_id_mask = list(range(0, len(proto.op))) def get_remapped_str(blob): blob_str = str(blob) return str(blob_remap.get(blob_str, blob_str)) def remap_list(proto_list): new_list = [get_remapped_str(b) for b in proto_list] del proto_list[:] proto_list.extend(new_list) def remap_op(op): new_op = caffe2_pb2.OperatorDef() new_op.CopyFrom(op) remap_list(new_op.input) remap_list(new_op.output) if new_op.type in remap_funcs: remap_funcs[new_op.type]( new_op, (name + '/') if name else '', blob_remap, ) return new_op del new_proto.op[:] new_proto.op.extend([remap_op(proto.op[op_id]) for op_id in op_id_mask]) remap_list(new_proto.external_input) remap_list(new_proto.external_output) new_net = Net(new_proto) if keep_schema: from caffe2.python import schema if self._input_record: new_net._input_record = schema.from_blob_list( self._input_record, [ BlobReference(get_remapped_str(blob), net=new_net) for blob in self._input_record.field_blobs() ], ) if self._output_record: new_net._output_record = schema.from_blob_list( self._output_record, [ BlobReference(get_remapped_str(blob), net=new_net) for blob in self._output_record.field_blobs() ], ) new_net._attr_dict.update(self._attr_dict) return new_net def ClonePartial(self, name, inputs, outputs, remap_funcs=None): """ Clone this net, including only ops that are necessary in order to compute `outputs` given `inputs`. Return references to the cloned outputs. Internal blobs (blobs that are produced and consumed inside the net but not used as outputs) will be remapped to avoid name conflict. Args: name: the name of the cloned net inputs: map where the keys correspond to BlobReferences in the original net, and the values correspond to external inputs in the partially cloned net. If `inputs` is a list, don't remap input names. outputs: outputs to be produced by the cloned net. Returns: Tuple (new_net, new_outputs) new_net: a new Net object. new_outputs: list of BlobReferences corresponding to the outputs produced by new_net. """ input_is_pair_list = isinstance(inputs, list) and all( isinstance(i, tuple) and len(i) == 2 for i in inputs) inputs = ( inputs if isinstance(inputs, (dict, OrderedDict)) else OrderedDict(inputs) if input_is_pair_list else OrderedDict(zip(inputs, inputs))) for output in outputs: assert self.BlobIsDefined(output), "{} is not defined".format(output) input_names = {str(k): str(v) for k, v in viewitems(inputs)} output_names = [str(o) for o in outputs] proto = self._net blob_versions = {str(i): 0 for i in inputs} ssa, blob_versions = get_ssa(proto, blob_versions) used_op_ids = get_op_ids_in_path(ssa, blob_versions, inputs, outputs) disallowed_op_ids = get_op_ids_in_path(ssa, blob_versions, [], inputs) assert len(set(used_op_ids) & set(disallowed_op_ids)) == 0, ( 'Cannot partially clone net: some of the ops required would ' + 'generate the given input.') sub_ssa = [op for i, op in enumerate(ssa) if i in used_op_ids] undef_blobs = get_undefined_blobs(sub_ssa) - set(viewkeys(input_names)) prefix = (name + '/') if name else '' def remap(blob_name): if blob_name in input_names: return input_names[blob_name] elif blob_name in undef_blobs: return blob_name else: return prefix + blob_name blob_mapping = {b: remap(b) for b in viewkeys(blob_versions)} new_net = self.Clone(name, blob_mapping, used_op_ids, remap_funcs) new_in = [ blob_mapping[i] for i in viewkeys(input_names)] + list(undef_blobs) new_out = [blob_mapping[o] for o in output_names] del new_net.Proto().external_input[:] new_net.Proto().external_input.extend(new_in) new_net._external_input_map = set(list(new_in)) del new_net.Proto().external_output[:] new_net.Proto().external_output.extend(new_out) return new_net, [new_net.GetBlobRef(o) for o in new_out] def Proto(self): self._InvalidateLookupTables() return self._net def PopulateProtoWithFileName(self): net_tb = workspace.operator_tracebacks.get(self.Name(), None) if net_tb is not None: for idx, op in enumerate(self.Proto().op): if idx in net_tb: op.name = ':'.join(map(str, net_tb[idx][0])) def NextScopedBlob(self, prefix='unnamed'): """Return the blob that has not been defined or registered in the current net. It returns `ScopedBlobReference(prefix)`, if it's valid, otherwise `ScopedBlobReference(prefix) + '_auto_' + ?`. Different calls is guaranteed to return blob with different names. """ output_blob_base = ScopedName(prefix) return self.NextBlob(output_blob_base) def NextBlob(self, prefix='unnamed'): """Return the blob that has not been defined or registered in the current net. It returns `BlobReference(prefix)`, if it's valid, otherwise `BlobReference(prefix) + '_auto_' + ?`. Different calls is guaranteed to return blob with different names.""" output_blob_base = BlobReference(prefix) output_blob = output_blob_base index = 0 while str(output_blob) in self._registered_blob_names or ( self.BlobIsDefined(output_blob)): output_blob = output_blob_base + '_auto_' + str(index) index += 1 self._registered_blob_names.add(str(output_blob)) return output_blob def NextName(self, prefix=None, output_id=None): """Returns the next name to be used, if you do not want to explicitly name your blob. [Deprecated, use NextBlob, NextScopedBlob instead]""" if prefix: output_name_base = self._net.name + '/' + prefix output_name = output_name_base if output_id is not None: output_name += ':' + str(output_id) index = 2 while self.BlobIsDefined(str(ScopedBlobReference(output_name))): output_name = output_name_base + '_' + str(index) if output_id is not None: output_name += ':' + str(output_id) index += 1 else: output_name = self._net.name + '_blob_' + str(self._next_name_index) self._next_name_index += 1 return str(output_name) def _ExtendOps(self, new_ops): self._net.op.extend(new_ops) for op in new_ops: self._op_outputs.update([text_type(o) for o in op.output]) def _CheckLookupTables(self): ''' Called from unit tests to validate the internal lookup tables match the protobuf contents. ''' test_op_outputs = set() for op in self._net.op: for o in op.output: test_op_outputs.add(o) test_external_inp = set() for inp in self._net.external_input: test_external_inp.add(inp) assert test_op_outputs.difference(self._op_outputs) == set() assert test_external_inp.difference(self._external_input_map) == set() def _InvalidateLookupTables(self): self._recreate_lookup_tables = True def _RecreateLookupTables(self): self._op_outputs = set() for op in self._net.op: for o in op.output: self._op_outputs.add(o) self._external_input_map = set() for inp in self._net.external_input: self._external_input_map.add(inp) self._recreate_lookup_tables = False def AddGradientOperators(self, ys, skip=0): """Add the gradient for operators in the net. Inputs: ys: a list or a dictionary specifying what blobs we want to compute derivatives of. If the input is a list, we will automatically generate their gradients with all-one values; if the input is a dictionary, for any dictionary entries that are not None, we will take the corresponding blobs as their gradients; for all those that are None, we will auto-fill them with 1. skip: skips the first n operators. This is provided mainly because a lot of nets may use the first few operators for data generation like stuff which really do not need to have gradients. Outputs: returns a map from the blob name in the input network to a blob containing gradient or a GradientSlice in case of sparse gradient Currently, this is hard-coded for float operators if there are branches (i.e. a blob is used as input to multiple operators). This is because the gradient accumulation (Sum) is float only right now. """ grad_ops, input_to_grad = GradientRegistry.GetBackwardPass( self._net.op[skip:], ys) # Check if in immediate mode: the grad_ops are actually being produced # by C++ and bypasses the CreateOperator() call, so in immediate mode # we will have to explicitly run them. if workspace.IsImmediate(): for op in grad_ops: workspace.RunOperatorImmediate(op) self._ExtendOps(grad_ops) return input_to_grad def AddArgument(self, arg_name, arg_value): self._net.arg.extend([utils.MakeArgument(arg_name, arg_value)]) def AddExternalInput(self, *inputs): assert len(inputs) > 0 refs = [] for input in inputs: input_name = str(input) assert str(input) not in self._external_input_map, ( 'Net already contains an input named %s' % input_name) for input in inputs: input_name = str(input) self._net.external_input.extend([input_name]) self._external_input_map.update([input_name]) refs.append(_get_blob_ref(input_name)) return refs[0] if len(refs) == 1 else refs def AddExternalOutput(self, *outputs): for output in outputs: assert isinstance(output, BlobReference) assert self.BlobIsDefined(output), "{} is not defined".format(output) for output in outputs: self.Proto().external_output.extend([str(output)]) def AddScopedExternalInputs(self, *inputs): res = self.AddExternalInput( * [ScopedBlobReference(b) for b in inputs] ) if not isinstance(res, list): res = [res] return res def AddScopedExternalOutputs(self, *outputs): return self.AddExternalOutput( * [ScopedBlobReference(b) for b in outputs] ) # This returns a reference to the observer def AddObserver(self, observer_type): return C.add_observer_to_net(self._net.name, observer_type) def RemoveObserver(self, observer): C.remove_observer_from_net(self._net.name, observer) def NumObservers(self): return C.num_observers_on_net(self._net.name) @property def external_inputs(self): return [_get_blob_ref(x) for x in self._net.external_input] @property def external_outputs(self): return [_get_blob_ref(x) for x in self._net.external_output] def set_input_record(self, input_record): from caffe2.python import schema assert self._input_record is None or (input_record.has_blobs() and set(input_record.field_blobs()) == set(self._input_record.field_blobs())), ( 'Input schema cannot be reset') if not input_record.has_blobs(): with NameScope(self.Name()): self._input_record = schema.NewRecord(self, input_record) else: self._input_record = input_record for blob in input_record.field_blobs(): if blob not in self.external_inputs: self.AddExternalInput(blob) return self._input_record def recover_input_record_by_prefix(self, prefix): """ Tries to recover input record by taking a subset of external_inputs with a given prefix name and interpreting them as schema column names """ record = _recover_record_by_prefix(self._net.external_input, prefix) if record: self.set_input_record(record) def set_output_record(self, record): assert self._output_record is None or (record.has_blobs() and set(record.field_blobs()) == set(self._output_record.field_blobs())), ( 'Output schema cannot be reset') for blob in record.field_blobs(): assert self.BlobIsDefined(blob), "{} is not defined".format(blob) for blob in record.field_blobs(): if blob not in self.external_outputs: self.AddExternalOutput(blob) self._output_record = record def recover_output_record_by_prefix(self, prefix): """ Tries to recover out record by taking a subset of external_outputs with a given prefix name and interpreting them as schema column names """ record = _recover_record_by_prefix(self._net.external_output, prefix) if record: self.set_output_record(record) def AppendOutputRecordField(self, field_name, record): from caffe2.python import schema assert self._output_record is not None, ( 'Tried to append to missing output record' ) for blob in record.field_blobs(): assert self.BlobIsDefined(blob), "{} is not defined".format(blob) for blob in record.field_blobs(): self.AddExternalOutput(blob) self._output_record = self._output_record + schema.Struct( (field_name, record) ) def input_record(self): return self._input_record def output_record(self): return self._output_record def AddExternalInputs(self, *inputs): return self.AddExternalInput(*inputs) def AddExternalOutputs(self, *outputs): self.AddExternalOutput(*outputs) def DeduplicateGradientSlices(self, g, aggregator='sum'): assert isinstance(g, GradientSlice) unique, remapping = self.Unique([g.indices], 2, engine='SparseHash') if aggregator.lower() == 'sum': new_g = self.UnsortedSegmentSum([g.values, remapping], 1) elif aggregator.lower() == 'mean': new_g = self.UnsortedSegmentMean([g.values, remapping], 1) else: raise ValueError('{} is not supported'.format(aggregator)) return GradientSlice(indices=unique, values=new_g) def RunAllOnGPU(self, gpu_id=0, use_cudnn=False): """A convenient function to run everything on the GPU.""" device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.CUDA device_option.cuda_gpu_id = gpu_id self._net.device_option.CopyFrom(device_option) if use_cudnn: for op in self._net.op: op.engine = "CUDNN" def RunAllOnMKL(self): """A convenient function to run everything using MKLDNN.""" device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.MKLDNN self._net.device_option.CopyFrom(device_option) def RunAllOnIDEEP(self): """A convenient function to run everything using IDEEP.""" device_option = caffe2_pb2.DeviceOption() device_option.device_type = caffe2_pb2.IDEEP self._net.device_option.CopyFrom(device_option) def _CreateAndAddToSelf(self, op_type, inputs, outputs=None, **kwargs): """A helper function to create an operator and add it to self. """ inputs = _RectifyInputOutput(inputs) for input in inputs: if not self.BlobIsDefined(input): assert input.Net() != self self.AddExternalInput(input) if outputs is None: # If we do not specify an output, we will assume that this op # produces one output in this case. outputs = self.NextName(prefix=op_type) elif type(outputs) is int: # In this case, we will auto-fill the given number of outputs # with auto-generated names. outputs = [ self.NextName(prefix=op_type, output_id=i) for i in range(outputs)] outputs = _RectifyInputOutput(outputs, net=self) op = CreateOperator(op_type, inputs, outputs, **kwargs) self._ExtendOps([op]) workspace.operator_tracebacks[self.Name()][ len(self._net.op) - 1] = _extract_stacktrace() if len(op.output) == 0: return elif len(op.output) == 1: return BlobReference(op.output[0], self) else: return tuple(BlobReference(o, self) for o in op.output) def __getattr__(self, op_type): if op_type.startswith('__'): raise AttributeError('Attribute {} not found.'.format(op_type)) if not IsOperator(op_type) and not IsOperatorWithEngine(op_type, "CUDNN"): raise AttributeError( 'Method ' + op_type + ' is not a registered operator.' + ' Did you mean: [' + ",".join(workspace.C.nearby_opnames(op_type)) + ']' ) return lambda *args, **kwargs: self._CreateAndAddToSelf( op_type, *args, **kwargs) def __dir__(self): additional_methods = [ op for op in _REGISTERED_OPERATORS if '_ENGINE_' not in op] return sorted(set(chain( dir(type(self)), viewkeys(self.__dict__), additional_methods ))) def Python( self, f, grad_f=None, python_func_type=None, pass_workspace=False, grad_output_indices=None, grad_input_indices=None ): """ Registers and returns a python operator. `f` and `grad_f` can be one of the following: - a function with signature (inputs, outputs), where inputs and outputs are a list of CPUTensor objects. This function will be called from C++ everytime the operator is executed. - a tuple (func, args, kwargs), here `func` is a callable, args is an argument list, and kwargs is a dict list. The call: f = func(*args, kwargs) will be performed locally at node initialization time, on all of the nodes of the job, returning `f`, a callable that will be used as the python operator function to be called during Net execution. This is to be used when using python operator in a distributed context, and allows to create and keep local python state across calls to the operator. `python_func_type` is a type of an object that constructed as python_func_type(f) and provides an implementation to forward and backward functions. Its useful in such a case where users needs a statefull PythonOp (ex: use autograd for computing grad_f). If `pass_workspace` is True, the signature is changed to (inputs, outputs, workspace) where `workspace` is the workspace the op is going to run on. This is potentially dangerous (as the op can manipulate the workspace directly), use on your own risk. If a gradient function is specified (`grad_f`), by default its inputs will be: (1) all inputs to `f`, (2) followed by all outputs of `f`, (3) and then all gradient outputs of `f`. The outputs of `grad_f` will be (by default) all gradient inputs to `f`. If a subset of the gradient outputs or gradient inputs is desired instead, then the subsets can be specified by providing `grad_output_indices` and/or `grad_input_indices` which identify the indices of `f`'s inputs and outputs which have gradients. """ assert(IsOperator('Python')) def make_builder(t): if not isinstance(t, tuple): return '' assert len(t) == 3, 'Expected builder tuple (func, args, kwargs)' func, args, kwargs = t normalized = (func, tuple(args), dict(kwargs)) return pickle.dumps(normalized) f_builder = make_builder(f) grad_f_builder = make_builder(grad_f) assert (not grad_f) or ((not f_builder) == (not grad_f_builder)), ( 'A tuple has to be passed to both f and grad_f or neither.') core_kwargs = {} if f_builder: core_kwargs['pickled_builder'] = f_builder core_kwargs['pickled_grad_builder'] = grad_f_builder core_kwargs['pass_workspace'] = pass_workspace else: core_kwargs['token'] = _RegisterPythonImpl( f, grad_f, python_func_type, pass_workspace=pass_workspace) grad_output_indices = grad_output_indices or [] grad_input_indices = grad_input_indices or [] return lambda *args, **kwargs: self._CreateAndAddToSelf( 'Python', grad_output_indices=grad_output_indices, grad_input_indices=grad_input_indices, *args, **dict(chain(viewitems(kwargs), viewitems(core_kwargs))) ) def is_external_input(self, blob): name = str(blob) return name in self._external_input_map def extend_ops(self, new_ops): return self._ExtendOps(new_ops) def copy_func_between_devices(src, dst): CPU = caffe2_pb2.CPU CUDA = caffe2_pb2.CUDA if src.device_type == CPU and dst.device_type == CPU: return None if src.device_type == CUDA and dst.device_type == CUDA: if src.cuda_gpu_id == dst.cuda_gpu_id: return None else: def fun(net, *args, **kw): with DeviceScope(dst): return net.Copy(*args, **kw) return fun if src.device_type == CUDA and dst.device_type == CPU: def fun(net, *args, **kw): with DeviceScope(src): return net.CopyGPUToCPU(*args, **kw) return fun if src.device_type == CPU and dst.device_type == CUDA: def fun(net, *args, **kw): with DeviceScope(dst): return net.CopyCPUToGPU(*args, **kw) return fun raise ValueError('Non-supported devices: %s and %s' % (src, dst)) def device_equal(src, dst): ''' We are using this fucntion instead of == operator because optional-value comparison between empty device_options and {device_type:0, cuda_gpu_id:0} returns not equal in some cases. ''' return src.device_type == dst.device_type and src.cuda_gpu_id == dst.cuda_gpu_id def update_placeholder_op_output(op, blob_to_device): ''' Placeholder ops (for e.g. Recv) always runs on CPU. So ensure their output blobs reside on CPU. ''' outputs = [] for output in op.output: if (output in blob_to_device and blob_to_device[output].device_type != caffe2_pb2.CPU): output += '_cpu' outputs.append(output) del op.output[:] op.output.extend(outputs) class RemapEntry: def __init__(self, blob, device): self.blob = blob self.device = device def __eq__(self, other): return self.blob == other.blob and self.device == other.device def __hash__(self): return hash(self.blob + str(self.device)) def InjectCrossDeviceCopies(net, blob_to_device=None, blob_remap=None, placeHolderOps=None): ''' Injecting Copy functions between device within a net. Users can provide a net with part of operators using different device_options. This method will automatically create a new net with Copy ops inserted in it. Inputs: blob_to_device: If not None, it is a map of blobs and their device locations. blob_remap: If not None, it is a map from a pair (blob, device) to the name of the blob in the given device. Blobs found in this map are assumed to be cached and don't need to be copied. Outputs: new_net: A new net with CopyCPUToGPU inserted with correct device option required_external_to_device: A mapping between unresolved external inputs and their required device options. Assumptions: 1. every external inputs of this net is already in blob_to_device! 2. if not, this function will use net device option 3. InferOpBlobDevices might fail to get the correct inference for ops like EnsureCPUOutput that could take in input from multiple places. ''' new_net = net.Clone(net._net.name + '_cross_device', keep_schema=True) del new_net._net.op[:] if blob_to_device is None: blob_to_device = {} # remapping of input blobs for each op. if blob_remap is None: blob_remap = {} temp_remap = {} net_option = net._net.device_option or caffe2_pb2.DeviceOption() # if external_inputs have device remappings generated by previous nets, # then add those remappings as external inputs as well. all_remaps = defaultdict(list) for entry, mapped_blob in blob_remap.items(): all_remaps[entry.blob].append(mapped_blob) mapped_external_inputs = [] for input in new_net._net.external_input: mapped_external_inputs.extend(all_remaps.get(input) or []) new_net._net.external_input.extend(mapped_external_inputs) for op in net._net.op: temp_remap.clear() # Get where inputs and outputs should be. If it is a Placeholder # (i.e. fake) op, then set op's device as blob's devices. input_dev = None output_dev = None if placeHolderOps is not None and op.type in placeHolderOps: input_dev, output_dev = InferOpDeviceAsBlobDevices(op) else: input_dev, output_dev = InferOpBlobDevices(op) for dev, input in zip(input_dev, op.input): assert net.BlobIsDefined(input), \ "input {} should be defined in the net.".format(input) if input not in blob_to_device: if net.is_external_input(input): blob_to_device[input] = net_option else: raise AttributeError( "No device information found for blob {}.". format(input) ) if not device_equal(blob_to_device[input], dev): # reuse already moved input if (RemapEntry(input, dev) in blob_remap and blob_to_device[blob_remap[RemapEntry(input, dev)]] == dev): temp_remap[input] = blob_remap[RemapEntry(input, dev)] else: # need to make input on correct device. copy_func = copy_func_between_devices( blob_to_device[input], dev ) def _gen_new_name(blob, device_option): CPU = caffe2_pb2.CPU CUDA = caffe2_pb2.CUDA if device_option.device_type == CPU: suffix = '_cpu' elif device_option.device_type == CUDA: suffix = '_cuda_' + str(device_option.cuda_gpu_id) else: raise RuntimeError( "Unknown device type: {}". format(device_option.device_type) ) return blob + suffix new_name = _gen_new_name(input, dev) copy_func(new_net, input, new_name) blob_remap[RemapEntry(input, dev)] = new_name temp_remap[input] = new_name blob_to_device[new_name] = dev if placeHolderOps is not None and op.type in placeHolderOps: update_placeholder_op_output(op, blob_to_device) # Enforcing no reuse blob between operators. In-place blob usage in an # op is allowed. This is based on the assumption that in-place op has # same device info for dev, output in zip(output_dev, op.output): if output in blob_to_device and ( output not in op.input and not device_equal(blob_to_device[output], dev) ): raise RuntimeError( "In-place blob: {} is not supported between operators " "with different device option previous:{} now: {}. " "Failed op:\n {}".format( output, blob_to_device[output], dev, op ) ) new_op = caffe2_pb2.OperatorDef() new_op.CopyFrom(op) new_list = [temp_remap.get(b, b) for b in new_op.input] del new_op.input[:] new_op.input.extend(new_list) # keep inplace blobs inplace original_inputs = list(op.input) for i, out in enumerate(new_op.output): try: input_idx = original_inputs.index(out) new_op.output[i] = new_op.input[input_idx] except ValueError: pass blob_to_device.update( {o: d for d, o in zip(output_dev, new_op.output)}) new_net.extend_ops([new_op]) return new_net, blob_to_device def InjectDeviceCopiesAmongNets(nets, blob_to_device_init=None): """ Takes in a list of nets. They usually represent your whole execution graph. This function will insert cross device copy functions to all nets, and resolve inter-net external inputs dependencies. This method will insert Copy funcitons if external inputs of a net is produced on different device than it is required. Inputs: nets: a list of nets Outputs: new_nets: a list of new nets with device difference solved. Some notes from wyiming: 1. You MUST pass nets in execution order. e.g. [train_init, train] """ assert isinstance(nets, list), \ "nets {} should be a list of nets.".format(str(nets)) assert all(isinstance(net, Net) for net in nets), \ "nets {} should be a list of nets.".format(str(nets)) # A holistic blob to device mapping. blob_to_device = blob_to_device_init or {} blob_remap = {} new_nets = [] for net in nets: new_net, blob_to_device = InjectCrossDeviceCopies( net, blob_to_device=blob_to_device, blob_remap=blob_remap, ) new_nets.append(new_net) return new_nets, blob_to_device def InjectDeviceCopiesAmongNetsWithoutB2D(nets, blob_to_device_init=None): new_nets, _ = InjectDeviceCopiesAmongNets(nets, blob_to_device_init) return new_nets def get_net_name(netlike): if isinstance(netlike, Net): return netlike.Proto().name elif isinstance(netlike, caffe2_pb2.NetDef): return netlike.name else: return netlike def output_to_list(op_output): """ Ensures that the output of an operator is a list. Use when an operator has a variable number of outputs, but a list of outputs is desired even when number of outputs is 1. Args: op_output: Either a BlobReferenece or an iterable of BlobReferences. Returns: A list of BlobReferences. """ assert type(op_output) in (list, tuple, BlobReference) return ( [op_output] if isinstance(op_output, BlobReference) else list(op_output)) def _add_net_to_dict(net_dict, net): name = get_net_name(net) if name in net_dict: assert net_dict[name] is None or net == net_dict[name], ( 'Different nets with same name: ' + name) return False else: net_dict[name] = net if isinstance(net, Net) else None return True class ExecutionStep(object): _step_names_used = set() @staticmethod def _get_next_step_name(basename): name = basename next_idx = 1 while name in ExecutionStep._step_names_used: name = basename + '_' + str(next_idx) next_idx += 1 ExecutionStep._step_names_used |= set([name]) return name def __init__(self, name, nets=None, num_iter=None): self._step = caffe2_pb2.ExecutionStep() self._step.name = name or ExecutionStep._get_next_step_name('step') self._net_dict = OrderedDict() self._is_used = False self._substeps = [] if nets is not None: if type(nets) is Net: nets = [nets] for net in nets: if _add_net_to_dict(self._net_dict, net): self._step.network.extend([get_net_name(net)]) if num_iter is not None: self._step.num_iter = num_iter def get_net(self, name): return self._net_dict[name] def Name(self): return self._step.name def __str__(self): return self._step.name def _assert_can_mutate(self): assert not self._is_used, ( 'Cannot mutate a step that has already been added to a plan/step.') def _notify_is_used(self): self._is_used = True def Proto(self): return self._step def HasNets(self): return self._step.network is not None and ( len(self._step.network) > 0) def HasSubsteps(self): return self._step.substep is not None and ( len(self._step.substep) > 0) def Nets(self): return list(viewvalues(self._net_dict)) def Substeps(self): return self._substeps def SetIter(self, num_iter): self._assert_can_mutate() self._step.num_iter = num_iter def SetCreateWorkspace(self, create_workspace): self._assert_can_mutate() self._step.create_workspace = create_workspace def SetNumConcurrentInstances(self, num_concurrent_instances): self._assert_can_mutate() self._step.num_concurrent_instances = num_concurrent_instances def SetOnlyOnce(self, only_once): self._assert_can_mutate() self._step.only_once = only_once def SetShouldStopBlob(self, should_stop_blob): assert isinstance(should_stop_blob, BlobReference), ( "expects BlobReference here, got {}".format(type(should_stop_blob))) self._assert_can_mutate() self._step.should_stop_blob = str(should_stop_blob) def RunEveryMillis(self, interval): """ Run this step every interval millisecods, as long as its siblings are still running. It is guaranteed that, after all siblings finish, this step will run at least one. This property is ignored for top-level ExecutionSteps. """ self._step.run_every_ms = interval def SetReportNet(self, report_net, report_interval): """ DEPRECATED. Use RunEveryMillis instead. """ self._assert_can_mutate() _add_net_to_dict(self._net_dict, report_net) self._step.report_net = get_net_name(report_net) self._step.report_interval = report_interval def AddSubstep(self, substep): self._assert_can_mutate() assert not self.HasNets(), 'Cannot have both network and substeps.' if isinstance(substep, ExecutionStep): substep._notify_is_used() if not substep.HasNets() and not substep.HasSubsteps(): return self for net in substep.Nets(): _add_net_to_dict(self._net_dict, net) self._substeps.append(substep) proto = substep.Proto() else: proto = substep self._step.substep.add().CopyFrom(proto) return self def SetConcurrentSubsteps(self, concurrent_substeps): self._assert_can_mutate() assert not self.HasNets(), 'Cannot have both network and substeps.' self._step.concurrent_substeps = concurrent_substeps def AddNet(self, net): self._assert_can_mutate() assert not self.HasSubsteps(), 'Cannot have both network and substeps.' assert isinstance(net, Net) _add_net_to_dict(self._net_dict, net) self._step.network.extend([get_net_name(net)]) return self def get_all_attributes(self, name): """ Return the list of all attributes under the given `name`, present in all of the nets used in this execution step and its children. """ return [ attr for net in viewvalues(self._net_dict) for attr in net.get_attributes(name) ] @classmethod def create_from_proto(cls, step_proto, net_obj_dict, net_proto_dict): """ Create ExecutionStep from ExecutionStep protobuf recursively """ assert isinstance(step_proto, caffe2_pb2.ExecutionStep) assert (len(step_proto.network) > 0 and len(step_proto.substep) == 0) or \ (len(step_proto.network) == 0 and len(step_proto.substep) > 0) steps_or_nets = [] if len(step_proto.substep) > 0: for substep_proto in step_proto.substep: steps_or_nets.append(ExecutionStep.create_from_proto( substep_proto, net_obj_dict, net_proto_dict)) else: for net_name in step_proto.network: if net_name not in net_obj_dict: assert net_name in net_proto_dict net = Net(net_proto_dict[net_name]) net_obj_dict[net_name] = net net = net_obj_dict[net_name] assert isinstance(net, Net) steps_or_nets.append(net) num_iter = step_proto.num_iter if step_proto.HasField('num_iter') else None concurrent_substeps = step_proto.concurrent_substeps if\ step_proto.HasField('concurrent_substeps') else None should_stop_blob = BlobReference(step_proto.should_stop_blob) if\ step_proto.HasField('should_stop_blob') else None only_once = step_proto.only_once if\ step_proto.HasField('only_once') else None num_concurrent_instances = step_proto.num_concurrent_instances if\ step_proto.HasField('num_concurrent_instances') else None create_workspace = step_proto.create_workspace if\ step_proto.HasField('create_workspace') else None run_every_ms = step_proto.run_every_ms if\ step_proto.HasField('run_every_ms') else None return execution_step( step_proto.name, steps_or_nets, num_iter=num_iter, report_net=None, # DEPRECATED report_interval=None, # DEPRECATED concurrent_substeps=concurrent_substeps, should_stop_blob=should_stop_blob, only_once=only_once, num_concurrent_instances=num_concurrent_instances, create_workspace=create_workspace, run_every_ms=run_every_ms) def add_nets_in_order(step, net_list): proto = step.Proto() for substep in step.Substeps(): add_nets_in_order(substep, net_list) for net in proto.network: if net not in net_list: net_list.append(net) # FIXME(azzolini): This is actually wrong. Report nets should be # instantiated first since they may run before any substep is run. # However, curerntly, Reporter depends on this behavior. if proto.report_net and proto.report_net not in net_list: net_list.append(proto.report_net) class Plan(object): def __init__(self, name_or_step): self._plan = caffe2_pb2.PlanDef() self._net_dict = OrderedDict() self._steps = [] # A list of ExecutionStep if isinstance(name_or_step, ExecutionStep): self._plan.name = name_or_step.Name() self.AddStep(name_or_step) elif isinstance(name_or_step, basestring): self._plan.name = name_or_step else: raise ValueError('name_or_step must be a string or ExecutionStep') def __str__(self): return self._plan.name def Proto(self): return self._plan def AddNets(self, nets): for net in nets: if _add_net_to_dict(self._net_dict, net): assert isinstance(net, Net) self._plan.network.add().CopyFrom(net.Proto()) def Nets(self): return list(viewvalues(self._net_dict)) def AddStep(self, step): assert isinstance(step, ExecutionStep) step._notify_is_used() if not step.HasNets() and not step.HasSubsteps(): return self._plan.execution_step.add().CopyFrom(step.Proto()) self._steps.append(step) # nets need to be added to the plan in order of usage net_list = [] add_nets_in_order(step, net_list) self.AddNets([step.get_net(n) for n in net_list]) def Steps(self): return self._steps def get_all_attributes(self, name): """ Return the list of all attributes under the given `name`, present in all of the nets used in this plan. """ return [ attr for net in viewvalues(self._net_dict) for attr in net.get_attributes(name) ] @classmethod def create_from_proto(cls, plan_proto): assert isinstance(plan_proto, caffe2_pb2.PlanDef) plan = Plan(plan_proto.name) plan._plan.CopyFrom(plan_proto) net_obj_dict = {} net_proto_dict = {} for net_proto in plan_proto.network: assert net_proto.name not in net_proto_dict net_proto_dict[net_proto.name] = net_proto for step_proto in plan_proto.execution_step: step = ExecutionStep.create_from_proto( step_proto, net_obj_dict, net_proto_dict) plan.AddStep(step) return plan def to_execution_step(step_or_nets, default_name=None): from caffe2.python.net_builder import NetBuilder if isinstance(step_or_nets, ExecutionStep): return step_or_nets stop_blob = None if not default_name and hasattr(step_or_nets, 'name'): default_name = step_or_nets.name if isinstance(step_or_nets, NetBuilder): stop_blob = step_or_nets._stop_blob step_or_nets = step_or_nets.get() return execution_step( default_name, step_or_nets, should_stop_blob=stop_blob) def execution_step(default_name, steps_or_nets, num_iter=None, report_net=None, report_interval=None, concurrent_substeps=None, should_stop_blob=None, only_once=None, num_concurrent_instances=None, create_workspace=False, run_every_ms=None): """ Helper for creating an ExecutionStep. - steps_or_nets can be: - None - Net - ExecutionStep - list - list - should_stop_blob is either None or a scalar boolean blob. - This blob is checked AFTER every substeps/subnets. - If specified and true, then this step will return immediately. - Be sure to handle race conditions if setting from concurrent threads. - if no should_stop_blob or num_iter is provided, defaults to num_iter=1 """ assert should_stop_blob is None or num_iter is None, ( 'Cannot set both should_stop_blob and num_iter.') if should_stop_blob is None and num_iter is None: num_iter = 1 step = ExecutionStep(default_name) if should_stop_blob is not None: step.SetShouldStopBlob(should_stop_blob) if num_iter is not None: step.SetIter(num_iter) if only_once is not None: step.SetOnlyOnce(only_once) if concurrent_substeps is not None: step.SetConcurrentSubsteps(concurrent_substeps) if report_net is not None: assert report_interval is not None step.SetReportNet(report_net, report_interval) if num_concurrent_instances is not None: step.SetNumConcurrentInstances(num_concurrent_instances) if create_workspace: step.SetCreateWorkspace(True) if run_every_ms: step.RunEveryMillis(run_every_ms) if isinstance(steps_or_nets, ExecutionStep): step.AddSubstep(steps_or_nets) elif isinstance(steps_or_nets, Net): step.AddNet(steps_or_nets) elif isinstance(steps_or_nets, list): if all(isinstance(x, Net) for x in steps_or_nets): for x in steps_or_nets: step.AddNet(x) else: for x in steps_or_nets: step.AddSubstep(to_execution_step(x)) elif steps_or_nets: raise ValueError( 'steps_or_nets must be a step, a net, or a list of nets or steps.') return step def scoped_execution_step(name, *args, **kwargs): """Same as execution_step() except that the step name is scoped.""" default_name = ScopedName(name) if name else name return execution_step(default_name, *args, **kwargs) def _extract_stacktrace(): ''' This function extracts stacktrace without file system access by purely using sys._getframe() and removes part that belongs to this file (core.py). We are not using inspect module because its just a wrapper on top of sys._getframe() whos logis is based on accessing source files on disk - exactly what we are trying to avoid here. Same stands for traceback module The reason for file system access avoidance is that if code is located on an NFS, file access might be slow Function returns a list of tuples (file_name, line_number, function) ''' result = [] # Ignore top 3 layers of stack: this function, _CreateAndAddToSelf, and # whatever calls _CreateAndAddToSelf (either __getattr__ or Python) frame = sys._getframe(3) # We just go down the frame stack in a loop while frame: # Its important to extract information from the frame here # as frame's current line most probably will change later. result.append((frame.f_code.co_filename, frame.f_lineno, frame.f_code.co_name)) frame = frame.f_back return result SetPerOpEnginePref = C.set_per_op_engine_pref SetGlobalEnginePref = C.set_global_engine_pref SetEnginePref = C.set_engine_pref SetOpEnginePref = C.set_op_engine_pref