## @package split # Module caffe2.python.layers.split from caffe2.python import schema from caffe2.python.layers.layers import ( ModelLayer, ) class Split(ModelLayer): def __init__(self, model, input_record, num_splits=1, axis=1, name='split', split=None, **kwargs): super(Split, self).__init__(model, name, input_record, **kwargs) self.axis = axis # Assume that first dimension is batch, so actual axis in shape is # axis - 1 axis -= 1 assert axis >= 0 assert isinstance(input_record, schema.Scalar),\ "Incorrect input type. Expected Scalar, but received: {0}".\ format(input_record) input_shape = input_record.field_type().shape assert len(input_shape) >= axis if split is None: assert input_shape[axis] % num_splits == 0 else: num_splits = len(split) assert input_shape[axis] == sum(split) if split is None: output_shape = list(input_shape) output_shape[axis] = int(output_shape[axis] / num_splits) else: output_shape = [] for i in range(num_splits): output_shape_i = list(input_shape) output_shape_i[axis] = split[i] output_shape.append(output_shape_i) data_type = input_record.field_type().base if split is None: output_scalars = [ schema.Scalar( (data_type, output_shape), self.get_next_blob_reference('output_{}'.format(i)), ) for i in range(num_splits) ] else: output_scalars = [ schema.Scalar( (data_type, output_shape[i]), self.get_next_blob_reference('output_{}'.format(i)), ) for i in range(num_splits) ] self.output_schema = schema.Tuple(*output_scalars) self.split = split def add_ops(self, net): net.Split( self.input_record.field_blobs(), self.output_schema.field_blobs(), split=self.split, axis=self.axis, )