from __future__ import absolute_import, division, print_function, unicode_literals import torch from torch._jit_internal import Optional # noqa: F401 import torch.nn as nn import torch.nn.intrinsic as nni from torch.nn.quantized.modules.utils import _quantize_weight class LinearPackedParams(torch.nn.Module): _version = 2 def __init__(self, dtype=torch.qint8): super(LinearPackedParams, self).__init__() self.dtype = dtype if self.dtype == torch.qint8: wq = torch._empty_affine_quantized([1, 1], scale=1.0, zero_point=0, dtype=torch.qint8) elif self.dtype == torch.float16: wq = torch.zeros([1, 1], dtype=torch.float) self.set_weight_bias(wq, None) @torch.jit.export def set_weight_bias(self, weight, bias): # type: (torch.Tensor, Optional[torch.Tensor]) -> None if self.dtype == torch.qint8: self._packed_params = torch.ops.quantized.linear_prepack(weight, bias) elif self.dtype == torch.float16: self._packed_params = torch.ops.quantized.linear_prepack_fp16(weight, bias) else: raise RuntimeError('Unsupported dtype on dynamic quantized linear!') @torch.jit.export def _weight_bias(self): if self.dtype == torch.qint8: return torch.ops.quantized.linear_unpack(self._packed_params) elif self.dtype == torch.float16: return torch.ops.quantized.linear_unpack_fp16(self._packed_params) else: raise RuntimeError('Unsupported dtype on dynamic quantized linear!') def forward(self, x): return x def _save_to_state_dict(self, destination, prefix, keep_vars): super(LinearPackedParams, self)._save_to_state_dict(destination, prefix, keep_vars) (w, b) = self._weight_bias() destination[prefix + 'weight'] = w destination[prefix + 'bias'] = b destination[prefix + 'dtype'] = self.dtype def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.set_weight_bias(state_dict[prefix + 'weight'], state_dict[prefix + 'bias']) state_dict.pop(prefix + 'weight') state_dict.pop(prefix + 'bias') version = local_metadata.get('version', None) if version is None or version < 2: self.dtype = torch.qint8 else: self.dtype = state_dict[prefix + 'dtype'] state_dict.pop(prefix + 'dtype') super(LinearPackedParams, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) @torch.jit.export def __getstate__(self): if not torch.jit.is_scripting(): raise RuntimeError('torch.save() is not currently supported for quantized modules.' ' See https://github.com/pytorch/pytorch/issues/24045.' ' Please use state_dict or torch.jit serialization.') qweight, bias = self._weight_bias() return qweight, bias, self.training, self.dtype @torch.jit.export def __setstate__(self, state): self.dtype = state[3] self.set_weight_bias(state[0], state[1]) self.training = state[2] class Linear(torch.nn.Module): r""" A quantized linear module with quantized tensor as inputs and outputs. We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to :class:`~torch.nn.Linear`, attributes will be randomly initialized at module creation time and will be overwritten later Attributes: weight (Tensor): the non-learnable quantized weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized to zero. scale: `scale` parameter of output Quantized Tensor, type: double zero_point: `zero_point` parameter for output Quantized Tensor, type: long Examples:: >>> m = nn.quantized.Linear(20, 30) >>> input = torch.randn(128, 20) >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ _version = 2 _FLOAT_MODULE = nn.Linear def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8): super(Linear, self).__init__() # We don't muck around with buffers or attributes or anything here # to keep the module simple. *everything* is simply a Python attribute. # Serialization logic is explicitly handled in the below serialization and # deserialization modules self.in_features = in_features self.out_features = out_features bias = None if bias_: bias = torch.zeros(out_features, dtype=torch.float) if dtype == torch.qint8: qweight = torch._empty_affine_quantized( [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8) elif dtype == torch.float16: qweight = torch.zeros([out_features, in_features], dtype=torch.float) else: raise RuntimeError('Unsupported dtype specified for quantized Linear!') self._packed_params = LinearPackedParams(dtype) self._packed_params.set_weight_bias(qweight, bias) self.scale = 1.0 self.zero_point = 0 def _get_name(self): return 'QuantizedLinear' def extra_repr(self): return 'in_features={}, out_features={}, scale={}, zero_point={}, qscheme={}'.format( self.in_features, self.out_features, self.scale, self.zero_point, self.weight().qscheme() ) def forward(self, x): return torch.ops.quantized.linear( x, self._packed_params._packed_params, self.scale, self.zero_point) # ===== Serialization methods ===== # The special consideration here is that we have to unpack the weights into their # regular QTensor form for serialization. Packed weights should not live # outside the process in which they were created, rather they should be derived # from the QTensor weight. def _save_to_state_dict(self, destination, prefix, keep_vars): super(Linear, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'scale'] = torch.tensor(self.scale) destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) # ===== Deserialization methods ===== # Counterpart to the serialization methods, we must pack the serialized QTensor # weight into its packed format for use by the FBGEMM ops. def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.scale = float(state_dict[prefix + 'scale']) state_dict.pop(prefix + 'scale') self.zero_point = int(state_dict[prefix + 'zero_point']) state_dict.pop(prefix + 'zero_point') version = local_metadata.get('version', None) if version is None or version == 1: # We moved the parameters into a LinearPackedParameters submodule weight = state_dict.pop(prefix + 'weight') bias = state_dict.pop(prefix + 'bias') state_dict.update({prefix + '_packed_params.weight': weight, prefix + '_packed_params.bias': bias}) super(Linear, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) # Function rather than property to make sure that JIT serialization doesn't # register this as an attribute def _weight_bias(self): return self._packed_params._weight_bias() def weight(self): return self._weight_bias()[0] def bias(self): return self._weight_bias()[1] def set_weight_bias(self, w, b): # type: (torch.Tensor, Optional[torch.Tensor]) -> None self._packed_params.set_weight_bias(w, b) @classmethod def from_float(cls, mod): r"""Create a quantized module from a float module or qparams_dict Args: mod (Module): a float module, either produced by torch.quantization utilities or provided by the user """ if hasattr(mod, 'weight_fake_quant'): # assert type(mod) == QATLinear, 'training mode nnq.Linear.from_float only works for nn.qat.Linear' weight_post_process = mod.weight_fake_quant activation_post_process = mod.activation_post_process else: assert type(mod) == cls._FLOAT_MODULE, ' nnq.' + cls.__name__ + '.from_float only works for ' + \ cls._FLOAT_MODULE.__name__ assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' if type(mod) == nni.LinearReLU: activation_post_process = mod[1].activation_post_process mod = mod[0] else: activation_post_process = mod.activation_post_process weight_post_process = mod.qconfig.weight() weight_post_process(mod.weight) dtype = weight_post_process.dtype act_scale, act_zp = activation_post_process.calculate_qparams() assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8' qweight = _quantize_weight(mod.weight.float(), weight_post_process) qlinear = cls(mod.in_features, mod.out_features, dtype=dtype) qlinear.set_weight_bias(qweight, mod.bias) qlinear.scale = float(act_scale) qlinear.zero_point = int(act_zp) return qlinear