import torch import torch.cuda.comm as comm from torch.autograd import Function class Broadcast(Function): @staticmethod def forward(ctx, target_gpus, *inputs): if not all(input.is_cuda for input in inputs): raise TypeError('Broadcast function not implemented for CPU tensors') ctx.target_gpus = target_gpus if len(inputs) == 0: return tuple() ctx.num_inputs = len(inputs) ctx.input_device = inputs[0].get_device() outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus) non_differentiables = [] for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]): if not input_requires_grad: for output in outputs: non_differentiables.append(output[idx]) ctx.mark_non_differentiable(*non_differentiables) return tuple([t for tensors in outputs for t in tensors]) @staticmethod def backward(ctx, *grad_outputs): return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs) class ReduceAddCoalesced(Function): @staticmethod def forward(ctx, destination, num_inputs, *grads): ctx.target_gpus = [grads[i].get_device() for i in range(0, len(grads), num_inputs)] grads = [grads[i:i + num_inputs] for i in range(0, len(grads), num_inputs)] return comm.reduce_add_coalesced(grads, destination) @staticmethod def backward(ctx, *grad_outputs): return (None, None,) + Broadcast.apply(ctx.target_gpus, *grad_outputs) class Gather(Function): @staticmethod def forward(ctx, target_device, dim, *inputs): assert all(map(lambda i: i.is_cuda, inputs)) ctx.target_device = target_device ctx.dim = dim ctx.input_gpus = tuple(map(lambda i: i.get_device(), inputs)) ctx.input_sizes = tuple(map(lambda i: i.size(ctx.dim), inputs)) return comm.gather(inputs, ctx.dim, ctx.target_device) @staticmethod def backward(ctx, grad_output): return (None, None) + Scatter.apply(ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output) class Scatter(Function): @staticmethod def forward(ctx, target_gpus, chunk_sizes, dim, input): ctx.target_gpus = target_gpus ctx.chunk_sizes = chunk_sizes ctx.dim = dim ctx.input_device = input.get_device() if input.is_cuda else -1 streams = None if ctx.input_device == -1: # Perform CPU to GPU copies in a background stream streams = [_get_stream(device) for device in ctx.target_gpus] outputs = comm.scatter(input, ctx.target_gpus, ctx.chunk_sizes, ctx.dim, streams) # Synchronize with the copy stream if streams is not None: for i, output in enumerate(outputs): with torch.cuda.device(ctx.target_gpus[i]): main_stream = torch.cuda.current_stream() main_stream.wait_stream(streams[i]) output.record_stream(main_stream) return outputs @staticmethod def backward(ctx, *grad_output): return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output) # background streams used for copying _streams = None def _get_stream(device): """Gets a background stream for copying between CPU and GPU""" global _streams if device == -1: return None if _streams is None: _streams = [None] * torch.cuda.device_count() if _streams[device] is None: _streams[device] = torch.cuda.Stream(device) return _streams[device]