# mypy: allow-untyped-defs from contextlib import contextmanager import torch import torch._custom_ops from torch._C import DispatchKey from torch._higher_order_ops.flat_apply import ( _ConstantFunction, flat_apply, to_graphable, ) from torch._higher_order_ops.strict_mode import strict_mode from torch._higher_order_ops.utils import autograd_not_implemented from torch._ops import HigherOrderOperator from torch._subclasses.fake_tensor import FakeTensorMode from torch.fx.experimental.proxy_tensor import ( get_proxy_slot, PreDispatchTorchFunctionMode, ProxyTorchDispatchMode, track_tensor_tree, ) from torch.utils import _pytree as pytree from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type class ExportTracepoint(HigherOrderOperator): def __init__(self): super().__init__("_export_tracepoint") def __call__(self, *args, **kwargs): return super().__call__(*args, **kwargs) _export_tracepoint = ExportTracepoint() @_export_tracepoint.py_impl(ProxyTorchDispatchMode) def export_tracepoint_dispatch_mode(mode, *args, **kwargs): p_args, p_kwargs = pytree.tree_map(mode.tracer.unwrap_proxy, (args, kwargs)) proxy = mode.tracer.create_proxy( "call_function", _export_tracepoint, p_args, p_kwargs ) return track_tensor_tree(args, proxy, constant=None, tracer=mode.tracer) @_export_tracepoint.py_impl(FakeTensorMode) def export_tracepoint_fake_tensor_mode(mode, *args, **kwargs): with mode: return args @_export_tracepoint.py_functionalize_impl def export_tracepoint_functional(ctx, *args, **kwargs): unwrapped_args = ctx.unwrap_tensors(args) unwrapped_kwargs = ctx.unwrap_tensors(kwargs) with ctx.redispatch_to_next(): _export_tracepoint(*unwrapped_args, **unwrapped_kwargs) return args _export_tracepoint.py_impl(DispatchKey.Autograd)( autograd_not_implemented(_export_tracepoint, deferred_error=True) ) @_export_tracepoint.py_impl(DispatchKey.CPU) def export_tracepoint_cpu(*args, **kwargs): return args def _wrap_submodule(mod, path, module_call_specs): assert isinstance(mod, torch.nn.Module) assert path != "" submodule = torch.fx.graph_module._get_attr(mod, path) def update_module_call_signatures(path, in_spec, out_spec): if path in module_call_specs: assert module_call_specs[path]["in_spec"] == in_spec assert module_call_specs[path]["out_spec"] == out_spec module_call_specs[path] = {"in_spec": in_spec, "out_spec": out_spec} def check_flattened(flat_args): for a in flat_args: if not (isinstance(a, (torch.Tensor, str, int, float, bool)) or a is None): raise AssertionError( f"Only Tensors or scalars are supported as pytree flattened inputs, got: {a}" ) def pre_hook(module, args, kwargs): flat_args, in_spec = pytree.tree_flatten((args, kwargs)) check_flattened(flat_args) flat_args = _export_tracepoint(*flat_args, kind="module_call_inputs", path=path) args, kwargs = pytree.tree_unflatten(flat_args, in_spec) return args, kwargs def post_hook(module, args, kwargs, res): _, in_spec = pytree.tree_flatten((args, kwargs)) flat_res, out_spec = pytree.tree_flatten(res) check_flattened(flat_res) flat_res = _export_tracepoint(*flat_res, kind="module_call_outputs", path=path) update_module_call_signatures(path, in_spec, out_spec) return pytree.tree_unflatten(flat_res, out_spec) pre_handle = submodule.register_forward_pre_hook(pre_hook, with_kwargs=True) post_handle = submodule.register_forward_hook(post_hook, with_kwargs=True) return pre_handle, post_handle @contextmanager def _wrap_submodules(f, preserve_signature, module_call_signatures): handles = [] try: for path in preserve_signature: handles.extend(_wrap_submodule(f, path, module_call_signatures)) yield finally: for handle in handles: handle.remove() def _mark_strict_experimental(cls): def call(self, *args): return strict_mode(self, args) cls.__call__ = call return cls def _register_subclass_spec_proxy_in_tracer(tracer, name, spec): """ This is a wrapper utility method on top of tracer to cache the already registered subclass spec attribute. This is useful because Subclass.__init__ will be same for each subclass. By default, fx will create multiple attributes/proxies for given attribute. """ fx_name = name + "0" if hasattr(tracer.root, fx_name): assert getattr(tracer.root, fx_name) == spec return tracer.create_proxy("get_attr", fx_name, (), {}) qualname = tracer.get_fresh_qualname(name) setattr(tracer.root, qualname, spec) return tracer.create_proxy("get_attr", qualname, (), {}) def mark_subclass_constructor_exportable_experimental(constructor_subclass): """ Experimental decorator that makes subclass to be traceable in export with pre-dispatch IR. To make your subclass traceble in export, you need to: 1. Implement __init__ method for your subclass (Look at DTensor implementation) 2. Decorate your __init__ method with _mark_constructor_exportable_experimental 3. Put torch._dynamo_disable decorator to prevent dynamo from peeking into its' impl Example: class FooTensor(torch.Tensor): @staticmethod def __new__(cls, elem, *, requires_grad=False): # ... return torch.Tensor._make_subclass(cls, elem, requires_grad=requires_grad) @torch._dynamo_disable @mark_subclass_constructor_exportable_experimental def __init__(self, elem, ...): # ... """ def _is_init(fn): return callable(fn) and fn.__name__ == "__init__" if not _is_init(constructor_subclass): raise RuntimeError( f"torch._export.wrappers.mark_constructor_exportable_experimental can only be applied on subclass tensor.__init__" f"But, you are adding it on {constructor_subclass.__name__} which is not supported. " f"If __init__ doesn't exist on your subclass, please add it. Look at DTensor.__init__ implementation for example" ) def wrapper(*args, **kwargs): if not is_traceable_wrapper_subclass_type(type(args[0])): assert constructor_subclass.__qualname__.endswith("__init__") obj_name = constructor_subclass.__qualname__[: -len("__init__")] raise RuntimeError( f"Applying mark_constructor_exportable_experimental on {obj_name} is not valid as it is not a traceable " f"tensor subclass. Please look at DTensor.__init__ implementation as an example of proper usage of this API." ) constructor_subclass(*args, **kwargs) if not torch._C._is_torch_function_mode_enabled(): return torch_function_mode_stack = torch.overrides._get_current_function_mode_stack() pre_dispatch_tf_modes = [ mode for mode in torch_function_mode_stack if isinstance(mode, PreDispatchTorchFunctionMode) ] assert len(pre_dispatch_tf_modes) <= 1, ( f"Expected only one PreDispatchTorchFunctionMode, found {len(pre_dispatch_tf_modes)}" ) if len(pre_dispatch_tf_modes) == 0: return mode = pre_dispatch_tf_modes[0] tracer = mode.tracer subclass = args[0] flat_args, in_spec = to_graphable((tuple(args[1:]), kwargs)) constructor_spec_name = "_".join( constructor_subclass.__qualname__.lower().split(".") ) qualname = tracer.get_fresh_qualname(constructor_spec_name) # type: ignore[union-attr] setattr(tracer.root, qualname, in_spec) # type: ignore[union-attr] spec_proxy = tracer.create_proxy("get_attr", qualname, (), {}) flat_proxy_args = pytree.tree_map_only( torch.Tensor, lambda x: get_proxy_slot(x, tracer).proxy, flat_args ) _, func_spec = torch.utils._pytree.tree_flatten( _ConstantFunction(type(subclass)) ) # We actually don't want to create a new spec for each instance # In fx graph, it will look like dtensor_const_func_spec # We can't directly shove DTensor.__init__ into fx as it is not # allowed type. fxable_constructor_call_spec_name = ( type(subclass).__name__.lower() + "_const_func_spec" ) # We should try to reuse the constructor call spec as it is guaranteed to be same # for each subclass type. This is different from proxy-ing the init arguments which # can't be reused because for example, DTensor can receive different DeviceMesh etc # as it's arguments func_spec_proxy = _register_subclass_spec_proxy_in_tracer( tracer, fxable_constructor_call_spec_name, func_spec ) inner_proxy = tracer.create_proxy( "call_function", flat_apply, (func_spec_proxy, spec_proxy, *flat_proxy_args), {}, ) track_tensor_tree(subclass, inner_proxy, constant=None, tracer=tracer) return return wrapper