import copy import dataclasses import logging from abc import ABC, abstractmethod from collections import defaultdict from collections.abc import Generator from contextlib import contextmanager from itertools import chain from typing import Any, Optional from torch.utils._appending_byte_serializer import ( AppendingByteSerializer, BytesReader, BytesWriter, ) from torch.utils._ordered_set import OrderedSet log = logging.getLogger(__name__) @dataclasses.dataclass(frozen=True) class CacheArtifact(ABC): """ Data for each cache artifact that will be serialized and deserialized """ key: str content: bytes = dataclasses.field(repr=False) # Do not display potential binary @staticmethod def serialize(writer: BytesWriter, cls: "CacheArtifact") -> None: writer.write_str(cls.key) writer.write_bytes(cls.content) @staticmethod def deserialize(artifact_type: str, reader: BytesReader) -> "CacheArtifact": key = reader.read_str() content = reader.read_bytes() return CacheArtifactFactory.create(artifact_type, key, content) @staticmethod def encode(content: Any) -> bytes: assert isinstance(content, bytes), f"Expected bytes, got {type(content)}" return content @abstractmethod def populate_cache(self) -> None: pass @staticmethod def type() -> str: """ Returns the type of the artifact. Must be unique across all CacheArtifact classes. CacheArtifactFactory.register will add property method to CacheInfo based on this (def {type}_artifacts) that returns all artifacts for specific cache. """ raise RuntimeError("CacheArtifact is an abstract class, please use a subclass") class CacheArtifactFactory: """ Factory for creating CacheArtifact objects based on their type """ _artifact_types: dict[str, type[CacheArtifact]] = {} @classmethod def register(cls, artifact_cls: type[CacheArtifact]) -> type[CacheArtifact]: artifact_type_key = artifact_cls.type() assert artifact_cls.type() not in cls._artifact_types, ( f"Artifact of type={artifact_type_key} already registered in mega-cache artifact factory" ) cls._artifact_types[artifact_type_key] = artifact_cls setattr( CacheInfo, f"{artifact_type_key}_artifacts", property(lambda self: self.artifacts[artifact_type_key]), ) return artifact_cls @classmethod def _get_artifact_type(cls, artifact_type_key: str) -> type[CacheArtifact]: assert artifact_type_key in cls._artifact_types, ( f"Artifact of type={artifact_type_key} not registered in mega-cache artifact factory" ) return cls._artifact_types[artifact_type_key] @classmethod def create(cls, artifact_type_key: str, key: str, content: bytes) -> CacheArtifact: artifact_cls = cls._get_artifact_type(artifact_type_key) return artifact_cls(key, content) @classmethod def encode_create( cls, artifact_type_key: str, key: str, content: Any ) -> CacheArtifact: artifact_cls = cls._get_artifact_type(artifact_type_key) return artifact_cls(key, artifact_cls.encode(content)) @dataclasses.dataclass class CacheInfo: """ Return value of serialization and deserialization for the purpose of instrumentation """ artifacts: defaultdict[str, list[str]] = dataclasses.field( default_factory=lambda: defaultdict(list) ) # Methods set by CacheArtifactFactory.register based on CacheArtifact.type() @property def inductor_artifacts(self) -> list[str]: # type: ignore[empty-body] ... @property def autotune_artifacts(self) -> list[str]: # type: ignore[empty-body] ... @property def aot_autograd_artifacts(self) -> list[str]: # type: ignore[empty-body] ... @property def pgo_artifacts(self) -> list[str]: # type: ignore[empty-body] ... def add(self, artifact: CacheArtifact) -> None: self.artifacts[artifact.type()].append(artifact.key) def clear(self) -> None: self.artifacts.clear() def empty(self) -> bool: return not self.artifacts def _serialize_single_cache( writer: BytesWriter, cls: "tuple[str, list[CacheArtifact]]" ) -> None: writer.write_str(cls[0]) writer.write_uint64(len(cls[1])) for artifact in cls[1]: CacheArtifact.serialize(writer, artifact) def _deserialize_single_cache( reader: BytesReader, ) -> "tuple[str, list[CacheArtifact]]": artifacts = [] artifact_type_key = reader.read_str() num_artifacts = reader.read_uint64() for _ in range(num_artifacts): artifacts.append(CacheArtifact.deserialize(artifact_type_key, reader)) return artifact_type_key, artifacts CacheArtifactsResult = dict[str, list[CacheArtifact]] class CacheArtifactManager: """ Lightweight manager class for collecting and processing cache artifacts for hot loading Intended Lifecycle: - Execute code via torch.compile, this will call CacheArtifactManager.record_artifact on each cache artifact - Call CacheArtifactManager.serialize to convert all the cache artifacts to portable format - Call CacheArtifactManager.deserialize to hot load the cache artifacts on a potentially different process NOTE: There's no FB/FC guarantees, results of cache artifacts will not be used unless code version matches. """ # Protected by the compile_lock _new_cache_artifacts: CacheArtifactsResult = defaultdict(list) # Keep a separate seen artifacts list to make avoid unnecessary duplicates # This list will not be cleared between serialize() calls _seen_artifacts: OrderedSet[CacheArtifact] = OrderedSet() # When serialize() is called, artifacts are transferred from _cache_artifacts to # internal data structure of the _serializer # This allows us to only pay the cost of serialization if serialize() is called _serializer: AppendingByteSerializer[tuple[str, list[CacheArtifact]]] = ( AppendingByteSerializer(serialize_fn=_serialize_single_cache) ) _cache_info: CacheInfo = CacheInfo() @classmethod def clear(cls) -> None: cls._new_cache_artifacts.clear() cls._seen_artifacts.clear() cls._serializer.clear() cls._cache_info.clear() @classmethod @contextmanager def with_fresh_cache(cls) -> Generator[None, None, None]: original_new_cache_artifacts = cls._new_cache_artifacts original_seen_artifacts = cls._seen_artifacts original_serializer = cls._serializer original_cache_info = cls._cache_info cls._new_cache_artifacts = defaultdict(list) cls._seen_artifacts = OrderedSet() cls._serializer = AppendingByteSerializer(serialize_fn=_serialize_single_cache) cls._cache_info = cls._cache_info.__class__() try: yield finally: cls._new_cache_artifacts = original_new_cache_artifacts cls._seen_artifacts = original_seen_artifacts cls._serializer = original_serializer cls._cache_info = original_cache_info @classmethod def record_artifact( cls, artifact_type: str, key: str, content: Any, ) -> None: """ Called from each caching operation to record the artifact in this "mega" list """ artifact = CacheArtifactFactory.encode_create(artifact_type, key, content) if artifact in cls._seen_artifacts: return log.debug("Recording %s", str(artifact)) cls._new_cache_artifacts[artifact_type].append(artifact) cls._seen_artifacts.add(artifact) @classmethod def need_serialize(cls) -> bool: """ Have we seen new artifacts since last serialize call? """ return len(cls._new_cache_artifacts) != 0 @classmethod def serialize(cls) -> Optional[tuple[bytes, CacheInfo]]: """ Converts the "mega" list into portable format """ for artifact in chain(*cls._new_cache_artifacts.values()): log.debug("saving: %s", artifact) cls._cache_info.add(artifact) if cls._cache_info.empty(): # If there are not artifacts, dont just return bytes with # version. return None try: # We deep copy cls._cache_info since later compilations # can keep adding to cache_info info = copy.deepcopy(cls._cache_info) cls._serializer.extend(cls._new_cache_artifacts.items()) artifact_bytes = cls._serializer.to_bytes() cls._new_cache_artifacts.clear() return artifact_bytes, info except Exception: log.warning("Failed to pickle cache artifacts", exc_info=True) return None @staticmethod def deserialize(serialized_artifacts: bytes) -> Optional[CacheArtifactsResult]: """ Converts the portable format back into CacheArtifacts """ try: CacheArtifactManager._ensure_cache_artifacts_registered() artifacts = dict( AppendingByteSerializer.to_list( serialized_artifacts, deserialize_fn=_deserialize_single_cache, ) ) except Exception: log.warning("Failed to un-pickle cache artifacts", exc_info=True) return None return artifacts @staticmethod def populate_caches(artifacts: CacheArtifactsResult) -> CacheInfo: info = CacheInfo() for artifact in chain(*artifacts.values()): log.debug("writing: %s", artifact) info.add(artifact) artifact.populate_cache() return info @classmethod def _ensure_cache_artifacts_registered(cls) -> None: """When deserializing caches in fresh process, we need to ensure that all cache artifacts are registered in the cache registry. This is done by simply importing all the cache artifacts already wrapped with register call. """ from torch._dynamo.pgo import PGOCacheArtifact # noqa: F401 from torch._functorch._aot_autograd.autograd_cache import ( # noqa: F401 AOTAutogradCacheArtifact, ) from torch._inductor.codecache import InductorCacheArtifact # noqa: F401 from torch._inductor.runtime.autotune_cache import ( # noqa: F401 AutotuneCacheArtifact, )