# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## ## @package elementwise_linear # Module caffe2.python.helpers.elementwise_linear from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from caffe2.python.modeling.parameter_info import ParameterTags def _elementwise_linear( model, op_call, blob_in, blob_out, dim, weight_init=None, bias_init=None, **kwargs ): """Elementwise_Linear""" weight_init = weight_init or ('ConstantFill', {'value': 1.0}) bias_init = bias_init or ('ConstantFill', {'value': 0.0}) blob_out = blob_out or model.net.NextName() if model.init_params: weight = model.param_init_net.__getattr__(weight_init[0])( [], blob_out + '_w', shape=[dim], **weight_init[1] ) bias = model.param_init_net.__getattr__(bias_init[0])( [], blob_out + '_b', shape=[dim], **bias_init[1] ) else: weight = core.ScopedBlobReference( blob_out + '_w', model.param_init_net) bias = core.ScopedBlobReference( blob_out + '_b', model.param_init_net) model.AddParameter(weight, ParameterTags.WEIGHT) model.AddParameter(bias, ParameterTags.BIAS) return op_call([blob_in, weight, bias], blob_out, **kwargs) def elementwise_linear(model, *args, **kwargs): return _elementwise_linear( model, model.net.ElementwiseLinear, *args, **kwargs)