import torch from torch._prims import utils from torch._prims.utils import check meta_lib = torch.library.Library("aten", "IMPL", "Meta") def toRealValueType(dtype): from_complex = { torch.complex32: torch.half, torch.cfloat: torch.float, torch.cdouble: torch.double } return from_complex.get(dtype, dtype) # Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py @torch.library.impl(meta_lib, "index_select") def meta_index_select(self, dim, index): result_size = list(self.size()) if self.dim() > 0: result_size[dim] = index.numel() return self.new_empty(result_size) @torch.library.impl(meta_lib, "index_select.out") def meta_index_select_out(self, dim, index, out): torch._resize_output_(out, self.size(), self.device) return out.copy_(torch.index_select(self, dim, index)) @torch.library.impl(meta_lib, "abs") def meta_abs(self): if self.is_complex(): float_type = toRealValueType(self.dtype) return self.new_empty(self.size(), dtype=float_type) else: return self.new_empty(self.size()) @torch.library.impl(meta_lib, "abs.out") def meta_abs_out(self, out): torch._resize_output_(out, self.size(), self.device) return out.copy_(torch.abs(self)) @torch.library.impl(meta_lib, "max") def meta_max(self): return self.new_empty(()) @torch.library.impl(meta_lib, "min") def meta_min(self): return self.new_empty(()) def squareCheckInputs(self, f_name): assert self.dim() >= 2, f"{f_name}: The input tensor must have at least 2 dimensions." # TODO: I think the error message has the -2 and -1 swapped. If you fix # it fix the C++ squareCheckInputs too assert self.size(-1) == self.size(-2), \ f"{f_name}: A must be batches of square matrices, but they are {self.size(-1)} by {self.size(-2)} matrices" def checkUplo(uplo: str): uplo_uppercase = uplo.upper() assert len(uplo) == 1 and uplo_uppercase == 'U' or uplo_uppercase == 'L', \ f"Expected UPLO argument to be 'L' or 'U', but got {uplo}" @torch.library.impl(meta_lib, "linalg_eigh") def meta_linalg_eigh(self, uplo="L"): squareCheckInputs(self, "linalg_eigh") checkUplo(uplo) real_dtype = toRealValueType(self.dtype) assert self.dim() >= 2 values = self.new_empty(self.shape, dtype=real_dtype) values.transpose_(-2, -1) vectors = self.new_empty(self.shape[:-1]) return (values, vectors) @torch.library.impl(meta_lib, "reflection_pad2d") def meta_pad2d(self, padding): valid_dims = self.size(1) != 0 and self.size(2) != 0 check( (self.ndim == 3 and valid_dims) or (self.ndim == 4 and valid_dims and self.size(3) != 0), f"3D or 4D (batch mode) tensor expected for input, but got: {self}" ) if self.ndim == 4: nbatch, nplane, input_h, input_w = self.shape else: nbatch = 1 nplane, input_h, input_w = self.shape pad_l, pad_r, pad_t, pad_b = padding output_h = input_h + pad_t + pad_b output_w = input_w + pad_l + pad_r if self.ndim == 3: return self.new_empty((nplane, output_h, output_w)) else: return self.new_empty((nbatch, nplane, output_h, output_w)) @torch.library.impl(meta_lib, "dot") def meta_dot(self, tensor): check( self.dim() == 1 and tensor.dim() == 1, f"1D tensors expected, but got {self.dim()}D and {tensor.dim()}D tensors" ) return self.new_empty(()) @torch.library.impl(meta_lib, "var_mean.correction") def meta_var_mean_correction(self, dim, *, correction, keepdim=False): dim = utils.reduction_dims(self.shape, dim) if keepdim: output_shape = tuple(self.shape[i] if i not in dim else 1 for i in range(self.ndim)) else: output_shape = utils.compute_reduction_output_shape(self.shape, dim) result1 = self.new_empty(output_shape, dtype=toRealValueType(self.dtype)) result2 = self.new_empty(output_shape) return result1, result2 @torch.library.impl(meta_lib, "inverse") def meta_inverse(self): # Bug: https://github.com/pytorch/pytorch/issues/77498 if self.numel() == 0: return torch.empty_like(self) r = self.new_empty(self.shape) r.transpose_(-2, -1) return r @torch.library.impl(meta_lib, "bernoulli.out") def meta_bernoulli(self, *, generator=None, out): torch._resize_output_(out, self.size(), self.device) return out @torch.library.impl(meta_lib, "_adaptive_avg_pool2d") def meta_adaptive_avg_pool2d(self, output_size): check(self.ndim == 3 or self.ndim == 4, f"Expected 3D or 4D tensor, but got {self.shape}") return self.new_empty(self.shape[:-2] + tuple(output_size)) @torch.library.impl(meta_lib, "_adaptive_avg_pool3d") def meta_adaptive_avg_pool3d(self, output_size): check(self.ndim == 4 or self.ndim == 5, f"Expected 4D or 5D tensor, but got {self.shape}") return self.new_empty(self.shape[:-3] + tuple(output_size))