#include #include #include #include #include #include #include #include #include namespace torch { namespace jit { namespace script { static ModulePtr create_module_object( c10::QualifiedName class_name, std::shared_ptr cu, bool shouldMangle = false) { // If the name is unqualified, prepend a `__torch__`, similar to what Python // does with `__main__` for top-level code. if (class_name.prefix().empty()) { class_name = c10::QualifiedName("__torch__", class_name.name()); } if (shouldMangle && cu->get_class(class_name) != nullptr) { class_name = cu->mangle(class_name); } auto cls = ClassType::create(std::move(class_name), cu, /*is_module=*/true); cu->register_type(cls); return c10::ivalue::Object::create( c10::StrongTypePtr(std::move(cu), std::move(cls)), 0); } Module::Module(c10::QualifiedName class_name) : module_value_(create_module_object( std::move(class_name), std::make_shared())) {} Module::Module( c10::QualifiedName class_name, std::shared_ptr cu, bool shouldMangle) : module_value_(create_module_object( std::move(class_name), std::move(cu), shouldMangle)) {} ModulePtr Module::module_object() const { if (!module_value_) { // User has created a Model without assigning it to something already // loaded. This is done in tests, and when using the .define method. module_value_ = create_module_object("Module", std::make_shared()); } return module_value_; } // first class mode runs models as first class objects, // and does not force inlining everywhere. This is experimental // as we bring up the system since it will degrade performance // and may introduce bugs. test_jit.py provides context managers // that enable it for specific tests. thread_local bool inline_everything = true; bool& getInlineEverythingMode() { return inline_everything; } void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) { to_impl(device, dtype, non_blocking); } void Module::to(at::ScalarType dtype, bool non_blocking) { to_impl(/*device=*/c10::nullopt, dtype, non_blocking); } void Module::to(at::Device device, bool non_blocking) { to_impl(device, /*dtype=*/c10::nullopt, non_blocking); } void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) const { #ifndef C10_MOBILE ExportModule(*this, out, extra_files); #else AT_ERROR("Saving module is not supported on mobile."); #endif } void Module::save(const std::string& filename, const ExtraFilesMap& extra_files) const { #ifndef C10_MOBILE ExportModule(*this, filename, extra_files); #else AT_ERROR("Saving module is not supported on mobile."); #endif } void module_state_to( const Slot& s, const c10::optional& device, const c10::optional& dtype, bool non_blocking) { // Need to access the `at::Tensor` as a `Variable` here. autograd::Variable variable = s.value().toTensor(); // Use the data's original device or dtype if not supplied here. auto new_data = variable.to( device.value_or(variable.device()), dtype.value_or(variable.scalar_type()), non_blocking); variable.set_data(new_data); } void Module::to_impl( const c10::optional& device, const c10::optional& dtype, bool non_blocking) { // First call `to()` on every child module. for (Module child : get_modules()) { child.to_impl(device, dtype, non_blocking); } // Then convert every of our parameters. for (Slot parameter : get_parameters()) { module_state_to(parameter, device, dtype, non_blocking); } // Then convert every tensor attributes (buffers). for (Slot attr : get_attributes()) { if (attr.type()->isSubtypeOf(TensorType::get())) { module_state_to(attr, device, dtype, non_blocking); } } } // remove the first module argument, replacing any access of its // parameters/attributes with extra_ivalue input Slots that hold what value to // pass into the graph. Used for ONNX export to remove first-class modules // so it can deal purely with parameters and inputs std::pair, std::vector> lower_graph( const ModulePtr& self, Graph& g_, size_t self_offset = 0) { std::shared_ptr g = g_.copy(); std::vector extra_ivalues; std::unordered_map slot_to_offset; struct ToScan { ModulePtr mod; Node* n; size_t offset; }; std::vector to_scan; std::vector to_clean; // nodes that should be dead at the end auto getOrAddSlot = [&](const Slot& slot) -> Value* { auto it = slot_to_offset.find(slot); if (it != slot_to_offset.end()) { size_t ivalues_start = g->inputs().size() - extra_ivalues.size(); return g->inputs().at(ivalues_start + it->second); } extra_ivalues.emplace_back(slot); slot_to_offset[slot] = extra_ivalues.size() - 1; return g->addInput()->setType(slot.type()); }; auto self_value = g->inputs().at(self_offset); for (Use use : self_value->uses()) { to_scan.emplace_back(ToScan{self, use.user, use.offset}); } while (to_scan.size() > 0) { auto e = to_scan.back(); to_scan.pop_back(); // when we lambda lift forks, first-class modules may be passed across // forks. This code recursively lowers the module in the fork call. if (e.n->kind() == prim::fork) { auto subgraph = e.n->g(attr::Subgraph); std::vector new_slots; std::tie(subgraph, new_slots) = lower_graph(e.mod, *subgraph, e.offset); e.n->g_(attr::Subgraph, subgraph); for (const Slot& slot : new_slots) { e.n->addInput(getOrAddSlot(slot)); } e.n->removeInput(e.offset); continue; } if (e.n->kind() != prim::GetAttr) { throw ErrorReport(e.n->sourceRange()) << "temporary: the only valid use of a module is looking up an " "attribute but found " << *e.n; } Slot slot(e.mod, e.mod->type()->getAttributeSlot(e.n->s(attr::name))); if (ClassTypePtr c = e.n->output()->type()->cast()) { if (c->is_module()) { auto obj = slot.value().toObject(); for (Use use : e.n->output()->uses()) { to_scan.emplace_back(ToScan{obj, use.user, use.offset}); } to_clean.emplace_back(e.n); continue; } } e.n->output()->replaceAllUsesWith(getOrAddSlot(slot)); e.n->destroy(); } while (to_clean.size() > 0) { Node* n = to_clean.back(); AT_ASSERT(!n->hasUses()); n->destroy(); to_clean.pop_back(); } AT_ASSERT(!self_value->hasUses()); g->eraseInput(self_offset); return std::make_pair(std::move(g), std::move(extra_ivalues)); } Method::Method(ModulePtr owner, Function* function) : owner_(std::move(owner)), function_(function) {} Module Method::owner() const { return Module(owner_); } void Method::run(Stack& stack) { stack.insert(stack.begin(), owner().module_object()); function_->run(stack); } IValue Method::operator()(std::vector stack, const Kwargs& kwargs) { stack.insert(stack.begin(), owner().module_object()); return (*function_)(std::move(stack), kwargs); } static std::vector loadTensors(const std::vector& slots) { std::vector result; result.reserve(slots.size()); for(const Slot& slot : slots) { result.emplace_back(slot.value().toTensor()); } return result; } std::pair, std::vector> Method::_lowered_graph() { auto result = lower_graph(owner().module_object(), *graph()); return std::make_pair(result.first, loadTensors(result.second)); } void Module::define(const std::string& src, const ResolverPtr& resolver) { const auto self = SimpleSelf(type()); class_compilation_unit()->define( name(), src, resolver ? resolver : script::nativeResolver(), &self); } void Module::clone_method( const Module& orig, const Function& method, const std::unordered_map& type_remap) { // type remapping - when we copy method implementations from one module // singleton to another, we need to update the types of the self arguments // to match the new module. // XXX - this only handles modules that occur as variables, not modules // that appear in aggregate types. Currently this works fine because // we restrict how modules can be used during the lowering step. Eventually, // we will need to decide what it means for us to 'copy' a module. // For instance, we can copy just the state (parameters, attributes), // but share the code. Or we can copy the code. If we choose to copy the // code, what should we do about aggregate types that contain a module? auto type_remap_fn = [&](TypePtr in) { auto it = type_remap.find(in); if (it == type_remap.end()) return in; return it->second; }; auto graph = method.graph()->copy(); graph->remapTypes(type_remap_fn); auto schema = method.getSchema().cloneWithRemappedTypes(type_remap_fn); const auto this_method_name = getNameForMethod(method.name()); auto copied = class_compilation_unit()->create_function(this_method_name, graph); type()->addMethod(copied); copied->setSchema(std::move(schema)); } void Module::clone_method(const Module& orig, const std::string& name) { std::unordered_map type_remap; std::vector> to_scan = {{orig, *this}}; while (!to_scan.empty()) { auto entry = to_scan.back(); to_scan.pop_back(); type_remap[entry.first.module_object()->type()] = entry.second.module_object()->type(); for (Slot s : entry.first.get_module_slots()) { to_scan.emplace_back(s.to_module(), entry.second.get_module(s.name())); } } return clone_method(orig, orig.get_method(name).function(), type_remap); } Module Module::clone() const { std::unordered_map type_remap; return clone_impl(type_remap); } Module Module::clone_impl( std::unordered_map& type_remap) const { // Create a new module_object in the same compilation unit. // The name is the same as for the original module, but it'll be mangled. // The class type is also created from scratch. Module r(name(), class_compilation_unit(), true); type_remap[type()] = r.type(); // Copy slots. If a slot is a module - recursively clone it. for (Slot s : get_slots()) { if (s.is_module()) { const Module& orig = s.to_module(); Module cloned = orig.clone_impl(type_remap); type_remap[orig.type()] = cloned.type(); r.set_or_add_slot( s.name(), type_remap.at(s.type()), cloned.module_object(), s.entity_type()); } else { r.set_or_add_slot(s.name(), s.type(), s.value(), s.entity_type()); } } // Clone methods remapping the types to the cloned ones. for (auto& fn : type()->methods()) { r.clone_method(*this, *fn, type_remap); } return r; } void Module::train(bool on) { for (auto submod : get_modules()) { submod.train(on); } if (auto slot = find_attribute("training")) { slot->setValue(on); } else { register_attribute("training", BoolType::get(), on); } } IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const { // Look up the class const auto classType = class_compilation_unit()->get_class(c10::QualifiedName(name)); if (!classType) { AT_ERROR( "Could not find class with name: '", name.qualifiedName(), "' in module."); } // Create a bare object with correct number of slots const size_t numAttrs = classType->numAttributes(); auto obj = c10::ivalue::Object::create( c10::StrongTypePtr(class_compilation_unit(), classType), numAttrs); // Invoke the `__init__()` of the class with the arguments provided. Stack stackWithSelf = {obj}; for (auto& arg : stack) { stackWithSelf.push_back(std::move(arg)); } // Note: following Python, `__init__()` modifies its first parameter in-place // and returns nothing. classType->getMethod("__init__")->operator()(std::move(stackWithSelf)); return obj; } slot_list Module::get_parameters() const { return slot_list(*this, EntityType::PARAMETER); } slot_list Module::get_attributes() const { return slot_list(*this, EntityType::ATTRIBUTE); } slot_list Module::get_module_slots() const { return slot_list(*this, EntityType::MODULE); } slot_list Module::get_slots() const { return slot_list(*this, c10::nullopt); } Module Slot::to_module() const { return Module(value().toObject()); } module_list Module::get_modules() const { return module_list(*this, EntityType::MODULE); } void Module::apply(const std::function& fn) { for (auto submod : get_modules()) { submod.apply(fn); } fn(*this); } } // namespace script } // namespace jit } // namespace torch