# Owner(s): ["module: __torch_dispatch__"] import tempfile import torch from copy import deepcopy from torch.library import Library, impl from torch.fx.experimental.proxy_tensor import ShapeEnv from torch import SymInt from torch._subclasses.fake_tensor import FakeTensorMode from torch.cuda.jiterator import _create_jit_fn import unittest from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, IS_WINDOWS, TEST_CUDA from torch.utils._mode_utils import no_dispatch, all_same_mode from torch.testing._internal.logging_tensor import LoggingTensor, LoggingTensorReentrant, LoggingTensorMode, \ log_input, capture_logs, capture_logs_with_logging_tensor_mode from torch.utils._pytree import tree_map, tree_map_only from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode, _get_current_dispatch_mode_stack from torch._custom_op import custom_op, CustomOp from torch.fx.experimental.proxy_tensor import make_fx import typing import collections from typing import Optional, Tuple, Union, List, Callable, Sequence from torch import Tensor import itertools import logging import sys import torch._dynamo import torch.testing._internal.custom_op_db import re class TestDispatcherPythonBindings(TestCase): def test_call_boxed(self) -> None: sin = torch._C._dispatch_find_schema_or_throw("aten::sin", "") x = torch.randn(3) y = torch._C._dispatch_call_boxed(sin, x) self.assertEqual(y, x.sin()) class TestPythonRegistration(TestCase): def test_override_aten_ops_with_multiple_libraries(self) -> None: x = torch.tensor([1, 2]) my_lib1 = Library("aten", "IMPL") my_lib2 = Library("aten", "IMPL") # Example 1 def my_neg(*args, **kwargs): return args[0]._neg_view() # Now we are secretly making the operator a view op so autograd needs to know how # to handle it my_lib1.impl('neg', my_neg, "AutogradCPU") self.assertTrue(torch.neg(x).is_neg()) # RuntimeError: impl("aten::neg", ...): # Explicitly provided namespace (aten) in operator name does not match ... with self.assertRaisesRegex(RuntimeError, "operator name does not match namespace"): my_lib3 = Library("foo", "DEF") my_lib3.define("neg(Tensor self) -> Tensor") my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU") del my_lib3 # Example 2 def my_mul(*args, **kwargs): return torch.zeros_like(args[0]) # torch.ops.aten.mul.Tensor my_lib2.impl("aten::mul.Tensor", my_mul, "ZeroTensor") y = torch._efficientzerotensor(2) self.assertFalse(torch.mul(x, y)._is_zerotensor()) # Assert that a user can't override the behavior of a (ns, op, dispatch_key) # combination if someone overrided the behavior for the same before them with self.assertRaisesRegex(RuntimeError, 'already a kernel registered from python'): my_lib2.impl(torch.ops.aten.mul.Tensor, my_mul, "ZeroTensor") del my_lib1 # Validate that lib2 is not affected by removing lib1 self.assertFalse(torch.mul(x, y)._is_zerotensor()) del my_lib2 # Validate that the old behavior is restored for neg and mul self.assertFalse(torch.neg(x).is_neg()) self.assertTrue(torch.mul(x, y)._is_zerotensor()) def test_error_if_fn_not_callable(self): with self.assertRaisesRegex(TypeError, "Input function is required to be a callable"): my_lib = Library("aten", "IMPL") my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU") def test_finalizer(self): impls_refcnt = sys.getrefcount(torch.library._impls) lib = Library("_torch_testing", "FRAGMENT") lib.define("foo123(Tensor x) -> Tensor") # 1 for `lib`, 1 for sys.getrefcount self.assertEqual(sys.getrefcount(lib), 2) # We gained an additional reference that gets cleared when the finalizer runs self.assertEqual(sys.getrefcount(torch.library._impls), impls_refcnt + 1) # 1 for `lib` # 1 for the finalizer # 1 for sys.getrefcount self.assertEqual(sys.getrefcount(lib._op_impls), 3) def foo123(x): pass lib.impl("_torch_testing::foo123", foo123, "CPU") key = '_torch_testing/foo123/CPU' self.assertTrue(key in torch.library._impls) saved_op_impls = lib._op_impls # del will definitely work if the following passes self.assertEqual(sys.getrefcount(lib), 2) del lib # 1 for saved_op_impls # 1 for sys.getrefcount # This function should be the last user of lib._op_impls: # - lib should not have a reference anymore (it was del'ed) # - lib's finalizer should not have a reference anymore self.assertEqual(sys.getrefcount(saved_op_impls), 2) self.assertTrue(key not in torch.library._impls) # lib's finalizer should not have a reference anymore self.assertEqual(sys.getrefcount(torch.library._impls), impls_refcnt) def test_override_cpu_sum(self) -> None: # Example 1 run = [False] def my_sum(*args, **kwargs): run[0] = True return args[0].clone() my_lib1 = Library("aten", "IMPL") my_lib1.impl('aten::sum', my_sum, "CPU") x = torch.tensor([1, 2]) self.assertEqual(torch.sum(x), x) self.assertTrue(run[0]) del my_lib1 # Validate that the old behavior is restored for sum self.assertEqual(torch.sum(x), torch.tensor(3)) def test_override_cuda_with_jiterator(self) -> None: def override_where_cuda() -> None: # Example 1: Invert the behavior of where's condition input not_where_code_string = ''' template T inverted_where(bool cond, T a, T b){ return !cond ? a : b; } ''' jitted_where = _create_jit_fn(not_where_code_string) CALLED = [False] def inverted_where(*args, **kwargs): CALLED[0] = True return jitted_where(*args, **kwargs) # overriding where's cuda kernel with Jiterator generated kernel my_lib = Library("aten", "IMPL") my_lib.impl('aten::where.self', inverted_where, "CUDA") device = 'cuda' cond = torch.tensor([True, True, False], device=device, dtype=torch.bool) x = torch.tensor([1, 2, 3], device=device) y = torch.tensor([-1, -2, -3], device=device) self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3])) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3])) def override_gelu_cuda() -> None: # Example 2: Use relu to approximate gelu for faster compute fastest_gelu_code_string = ''' template T fast_gelu(T a){ return a > 0 ? a : 0; } ''' jitted_gelu = _create_jit_fn(fastest_gelu_code_string) CALLED = [False] def fast_gelu(*args, **kwargs): CALLED[0] = True return jitted_gelu(*args, **kwargs) # overriding gelu's cuda kernel with Jiterator generated relu kernel my_lib = Library("aten", "IMPL") my_lib.impl('aten::gelu', fast_gelu, "CUDA") x = torch.rand([3, 3], device='cuda', dtype=torch.float) self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x)) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertNotEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x)) def override_exp_cuda() -> None: # Example 3: Preventing exp from exploding for float16 clipped_exp_code_string = ''' template T clipped_exp(T a){ return a > T(10.0) ? T(22026.4657948) : exp(a); } ''' jitted_exp = _create_jit_fn(clipped_exp_code_string) CALLED = [False] def clipped_exp(*args, **kwargs): CALLED[0] = True return jitted_exp(*args, **kwargs) # overriding exp's cuda kernel with clipped_exp kernel my_lib = Library("aten", "IMPL") my_lib.impl('aten::exp', clipped_exp, "CUDA") x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16) self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16)) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertEqual(torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16)) def override_add_cuda() -> None: # Example 4: simulate a hardware bug, where the adder is always off by 1 buggy_add_code_string = ''' template T buggy_add(T a, T b){ return a + b + T(1); } ''' jitted_add = _create_jit_fn(buggy_add_code_string) CALLED = [False] def buggy_add(*args, **kwargs): CALLED[0] = True return jitted_add(*args, **kwargs) my_lib = Library("aten", "IMPL") my_lib.impl('aten::add.Tensor', buggy_add, "CUDA") x_cpu = torch.rand([3, 3], device='cpu') y_cpu = torch.rand([3], device='cpu') x_cuda = x_cpu.cuda() y_cuda = y_cpu.cuda() self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1) self.assertTrue(CALLED[0]) del my_lib # behavior restored after deregistration self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu) if torch.cuda.is_available() and not TEST_WITH_ROCM: override_where_cuda() override_gelu_cuda() override_exp_cuda() override_add_cuda() def test_extend_library_with_dispatch_key_arg(self): def my_sum(*args, **kwargs): return args[0].clone() my_lib1 = Library("aten", "IMPL", dispatch_key="CPU") # RuntimeError: Explicitly provided dispatch key (Conjugate) is # inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"): my_lib1.impl('sum', my_sum, "Conjugate") my_lib1.impl('aten::sum', my_sum) x = torch.tensor([1, 2]) self.assertEqual(torch.sum(x), x) del my_lib1 def test_create_new_library(self) -> None: my_lib1 = Library("foo", "DEF") my_lib1.define("sum(Tensor self) -> Tensor") # Example 1 @torch.library.impl(my_lib1, "sum", "CPU") def my_sum(*args, **kwargs): return args[0].clone() x = torch.tensor([1, 2]) self.assertEqual(torch.ops.foo.sum(x), x) my_lib2 = Library("foo", "IMPL") # Example 2 @torch.library.impl(my_lib2, torch.ops.foo.sum.default, "ZeroTensor") def my_sum_zt(*args, **kwargs): if args[0]._is_zerotensor(): return torch._efficientzerotensor(args[0].shape) else: return args[0].clone() y = torch._efficientzerotensor(3) self.assertTrue(torch.ops.foo.sum(y)._is_zerotensor()) self.assertEqual(torch.ops.foo.sum(x), x) del my_lib2 del my_lib1 def test_create_new_library_fragment_no_existing(self): my_lib = Library("foo", "FRAGMENT") my_lib.define("sum2(Tensor self) -> Tensor") @torch.library.impl(my_lib, "sum2", "CPU") def my_sum(*args, **kwargs): return args[0] x = torch.tensor([1, 2]) self.assertEqual(torch.ops.foo.sum2(x), x) del my_lib def test_create_new_library_fragment_with_existing(self): my_lib1 = Library("foo", "DEF") # Create a fragment my_lib2 = Library("foo", "FRAGMENT") my_lib2.define("sum4(Tensor self) -> Tensor") @torch.library.impl(my_lib2, "sum4", "CPU") def my_sum4(*args, **kwargs): return args[0] x = torch.tensor([1, 2]) self.assertEqual(torch.ops.foo.sum4(x), x) # Create another fragment my_lib3 = Library("foo", "FRAGMENT") my_lib3.define("sum3(Tensor self) -> Tensor") @torch.library.impl(my_lib3, "sum3", "CPU") def my_sum3(*args, **kwargs): return args[0] x = torch.tensor([1, 2]) self.assertEqual(torch.ops.foo.sum3(x), x) del my_lib1 del my_lib2 del my_lib3 @unittest.skipIf(IS_WINDOWS, "Skipped under Windows") def test_alias_analysis(self): def test_helper(alias_analysis=""): my_lib1 = Library("foo", "DEF") called = [0] @torch.library.define(my_lib1, "_op() -> None", alias_analysis=alias_analysis) def _op(*args, **kwargs): called[0] += 1 @torch.jit.script def _test(): torch.ops.foo._op() assert "foo::_op" in str(_test.graph) with self.assertRaises(AssertionError): test_helper("") # alias_analysis="FROM_SCHEMA" test_helper("CONSERVATIVE") def test_error_for_unsupported_ns_or_kind(self) -> None: with self.assertRaisesRegex(ValueError, "Unsupported kind"): my_lib1 = Library("myns", "BLA") for kind in ('DEF', 'FRAGMENT'): with self.assertRaisesRegex(ValueError, "reserved namespace"): my_lib1 = Library("prim", kind) def test_returning_symint(self) -> None: shape_env = ShapeEnv() fake_tensor_mode = FakeTensorMode(shape_env=shape_env) ft = fake_tensor_mode.from_tensor(torch.rand(2, 3)) s0, s1 = ft.shape tlib = Library("tlib", "DEF") tlib.define("sqsum(SymInt a, SymInt b) -> SymInt") @impl(tlib, "sqsum", "CompositeExplicitAutograd") def sqsum(a: SymInt, b: SymInt): return a * a + b * b out = torch.ops.tlib.sqsum.default(s0, s1) out_val = shape_env.evaluate_expr(out.node.expr) self.assertEquals(out_val, 13) class TestCustomOp(TestCase): test_ns = '_test_custom_op' def tearDown(self): import torch._custom_op keys = list(torch._custom_op.global_registry.keys()) for key in keys: if not key.startswith(f'{TestCustomOp.test_ns}::'): continue torch._custom_op.global_registry[key]._destroy() def test_invalid_schemas(self): # function schmea validation goes through torchgen, so this is just a # basic test. with self.assertRaisesRegex(AssertionError, 'Invalid function schema: foo'): @custom_op(f'{TestCustomOp.test_ns}::foo', "(") def foo(x): ... def test_name_must_match(self): with self.assertRaisesRegex(ValueError, 'to have name'): @custom_op(f'{TestCustomOp.test_ns}::foo', "(Tensor x) -> Tensor") def bar(x): ... with self.assertRaisesRegex(ValueError, 'to have name'): @custom_op(f'{TestCustomOp.test_ns}::foo') def baz(x: Tensor) -> Tensor: ... def test_unsupported_schemas(self): def foo(x): ... with self.assertRaisesRegex(ValueError, 'does not support non-functional'): custom_op(f'{TestCustomOp.test_ns}::foo', '(Tensor(a!) x) -> Tensor(a)')(foo) with self.assertRaisesRegex(ValueError, 'does not support view functions'): custom_op(f'{TestCustomOp.test_ns}::foo', '(Tensor(a) x) -> Tensor(a)')(foo) with self.assertRaisesRegex(ValueError, 'no outputs'): custom_op(f'{TestCustomOp.test_ns}::foo', '(Tensor x) -> ()')(foo) with self.assertRaisesRegex(ValueError, 'self'): custom_op(f'{TestCustomOp.test_ns}::foo', '(Tensor self) -> ()')(foo) def test_schema_matches_signature(self): with self.assertRaisesRegex(ValueError, 'signature to match'): @custom_op(f'{TestCustomOp.test_ns}::blah', '(Tensor y) -> Tensor') def blah(x): pass with self.assertRaisesRegex(ValueError, 'signature to match'): @custom_op(f'{TestCustomOp.test_ns}::blah2', '(Tensor x, *, Tensor y) -> Tensor') def blah2(x, y): pass with self.assertRaisesRegex(ValueError, 'signature to match'): @custom_op(f'{TestCustomOp.test_ns}::blah3', '(Tensor x, *, Tensor w, Tensor z) -> Tensor') def blah3(x, *, y, z): pass with self.assertRaisesRegex(ValueError, 'signature to match'): @custom_op(f'{TestCustomOp.test_ns}::blah4', '(Tensor x, *, Tensor z, Tensor y) -> Tensor') def blah4(x, *, y, z): pass with self.assertRaisesRegex(ValueError, 'not supported'): @custom_op(f'{TestCustomOp.test_ns}::blah5', '(Tensor x) -> Tensor') def blah5(*args): pass with self.assertRaisesRegex(ValueError, 'not supported'): @custom_op(f'{TestCustomOp.test_ns}::blah6', '(*, Tensor z, Tensor y) -> Tensor') def blah6(**kwargs): pass with self.assertRaisesRegex(ValueError, 'default arguments'): @custom_op(f'{TestCustomOp.test_ns}::blah7', '(Tensor x, *, Tensor y) -> Tensor') def blah7(x=1, *, y): pass with self.assertRaisesRegex(ValueError, 'default arguments'): @custom_op(f'{TestCustomOp.test_ns}::blah8', '(Tensor x, *, Tensor y) -> Tensor') def blah8(x, *, y=1): pass # kwonly-arg works @custom_op(f'{TestCustomOp.test_ns}::blah9', '(Tensor x, *, Tensor y) -> Tensor') def blah9(x, *, y): pass def test_unsupported_annotation_categories(self): with self.assertRaisesRegex(ValueError, 'varargs'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(*args): ... del foo with self.assertRaisesRegex(ValueError, 'varkwargs'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(**kwargs): ... del foo with self.assertRaisesRegex(ValueError, 'must have a type annotation'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x): ... del foo with self.assertRaisesRegex(ValueError, 'default value'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Optional[Tensor] = None): ... del foo with self.assertRaisesRegex(ValueError, 'default value'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Optional[Tensor] = None): ... del foo with self.assertRaisesRegex(ValueError, 'either Tensor or a Tuple'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor) -> int: ... del foo with self.assertRaisesRegex(ValueError, 'either Tensor or a Tuple'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor) -> Tuple[Tensor, int]: ... del foo with self.assertRaisesRegex(ValueError, 'either Tensor or a Tuple'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor) -> Tuple[Tensor, ...]: ... del foo def test_supported_param_types(self): def generate_examples(typ): if typ is int: return [17] if typ is float: return [3.14] if typ is bool: return [True] if typ is str: return ["foo"] if typ is torch.dtype: return [torch.float32] if typ is torch.device: return [torch.device('cpu')] if typ == torch.types.Number: return [2.718] if typ is torch.Tensor: return [torch.tensor(3)] if typ == Optional[torch.types.Number]: return [None, 2.718] origin = typing.get_origin(typ) if origin is Union: args = typing.get_args(typ) assert len(args) == 2 and (args[0] is type(None) or args[1] is type(None)) elt = args[0] if args[1] is type(None) else args[1] return generate_examples(elt) + [None] if origin is collections.abc.Sequence: args = typing.get_args(typ) assert len(args) == 1 examples = generate_examples(args[0]) return list(itertools.product(examples, examples)) + [] raise AssertionError(f"unsupported param type {typ}") for typ in torch._custom_op.SUPPORTED_PARAM_TYPES: @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor, y: typ) -> Tensor: ... yeet = None @foo.impl(['cpu']) def foo_cpu(x, y): nonlocal yeet yeet = y return x.clone() try: for example in generate_examples(typ): foo(torch.randn([]), example) self.assertEqual(yeet, example, msg=f'{typ} {example}') yeet = None finally: foo._destroy() del foo del foo_cpu def test_sequences(self): # Sequence[int] gets automagically turned into int[] in the schema. # This test checks that we actually do support arbitrary sequence types. class MySequence(collections.abc.Sequence): def __init__(self): self._container = [1, 2, 3] def __getitem__(self, idx): return self._container[idx] def __len__(self): return len(self._container) @custom_op("blah::foo") def foo(x: torch.Tensor, sizes: Sequence[int]) -> torch.Tensor: ... called = 0 @foo.impl('cpu') def foo_cpu(x, sizes): nonlocal called called += 1 # Dispatcher will normalize the sequence type into a List self.assertEqual(sizes, [1, 2, 3]) return x.clone() x = torch.randn([]) seq = MySequence() foo(x, seq) self.assertEqual(called, 1) def test_unsupported_param_types(self): # Not comprehensive (it doesn't need to be), just a check that our mechanism works with self.assertRaisesRegex(ValueError, 'unsupported type'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor, y: List[Optional[int]]) -> Tensor: ... del foo with self.assertRaisesRegex(ValueError, 'unsupported type'): # int[N] in Dispatcher is a bit wild, so we don't try to support it. @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor, y: Tuple[int, int]) -> Tensor: ... del foo with self.assertRaisesRegex(ValueError, 'unsupported type'): # We could theoretically support this, but the syntax for suporting # int[] is Sequence[int] @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor, y: List[int]) -> Tensor: ... del foo with self.assertRaisesRegex(ValueError, 'unsupported type'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Tensor, y: Callable) -> Tensor: ... del foo def test_custom_op_behaves_like_function(self): from torch.testing._internal.custom_op_db import numpy_mul self.assertEqual(numpy_mul.__name__, 'numpy_mul') self.assertEqual(numpy_mul.__module__, 'torch.testing._internal.custom_op_db') self.assertTrue(callable(numpy_mul)) def test_custom_op_repr(self): from torch.testing._internal.custom_op_db import numpy_mul expected = '' self.assertEqual(repr(numpy_mul), expected) def test_supported_schemas(self): # All of these should already be tested by PyTorch codegen # (we share the same mechanism), but here's a sanity check. schemas = [ '(Tensor x) -> Tensor', '(Tensor x) -> Tensor y', '(Tensor[] x) -> Tensor y', '(Tensor x) -> (Tensor, Tensor)', '(Tensor x) -> (Tensor y, Tensor z)', '(Tensor x) -> (Tensor y, Tensor z)', ] other_schemas = [ '(Tensor x, Tensor w) -> (Tensor y, Tensor z)', '(Tensor x, Tensor w) -> (Tensor, Tensor)', '(Tensor x, Tensor w) -> Tensor', '(Tensor? x, Tensor w) -> Tensor', '(Tensor? x, Tensor[] w) -> Tensor', '(Tensor x, int[] w) -> Tensor', '(Tensor x, SymInt[] w) -> Tensor', '(Tensor x, Scalar w) -> Tensor', '(Tensor x, float w) -> Tensor', '(Tensor x, float? w) -> Tensor', '(Tensor x, bool[] w) -> Tensor', ] def foo(x): ... def bar(x, w): ... for schema in schemas: op = custom_op(f'{TestCustomOp.test_ns}::foo', schema)(foo) op._destroy() for schema in other_schemas: op = custom_op(f'{TestCustomOp.test_ns}::bar', schema)(bar) op._destroy() def test_reserved_ns(self): from torch._custom_op import RESERVED_NS for ns in RESERVED_NS: with self.assertRaisesRegex(ValueError, 'is a reserved namespace'): @custom_op(f'{ns}::foo', '(Tensor x) -> Tensor') def foo(x): ... with self.assertRaisesRegex(ValueError, 'is a reserved namespace'): @custom_op(f'{ns}::foo2') def foo2(x: torch.Tensor) -> torch.Tensor: ... def test_private_ctor(self): with self.assertRaisesRegex(RuntimeError, 'CustomOp constructor is private'): CustomOp(None, None, None, None) def test_lifetime(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... # 3 references: # - foo (in this function) # - arg passed to sys.getrefcount # - global_registry self.assertEqual(sys.getrefcount(foo), 3) # We can't define an op multiple times, with self.assertRaisesRegex(RuntimeError, 'multiple times'): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... # Unless we delete the original op. foo._destroy() # Smoke test @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... foo._destroy() def test_autograd_notimplemented(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... x = torch.randn(3, requires_grad=True) with self.assertRaisesRegex(RuntimeError, 'Autograd has not been implemented'): foo(x) foo._destroy() @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: Sequence[torch.Tensor]) -> torch.Tensor: ... x = torch.randn(3, requires_grad=True) y = torch.randn(3) with self.assertRaisesRegex(RuntimeError, 'Autograd has not been implemented'): foo([y, x]) foo._destroy() @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: ... x = torch.randn(3, requires_grad=True) y = torch.randn(3) with self.assertRaisesRegex(RuntimeError, 'Autograd has not been implemented'): foo(y, x) foo._destroy() def test_impl_cpu(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... @foo.impl('cpu') def foo_cpu(x): return x.sin() x = torch.randn(3) result = foo(x) self.assertEqual(result, foo_cpu(x)) def test_impl_invalid_devices(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... def foo_impl(x): return x.sin() from torch._custom_op import SUPPORTED_DEVICE_TYPE_TO_KEY for device_type in SUPPORTED_DEVICE_TYPE_TO_KEY.keys(): # Smoke test: should not raise error foo.impl(device_type)(foo_impl) # Not supported by this API: we can either support them in the future # or provide some other CustomOp.def_* function. This depends on how # common the use cases are. for invalid_type in ['hip', 'xla', 'mkldnn', ['cpu', 'hip']]: with self.assertRaisesRegex(ValueError, "we only support device_type"): foo.impl(invalid_type)(foo_impl) foo._destroy() @unittest.skipIf(not TEST_CUDA, "requires CUDA") def test_impl_separate(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... @foo.impl('cpu') def foo_cpu(x): return x.sin() @foo.impl('cuda') def foo_cuda(x): return x.cos() x = torch.randn(3) result = foo(x) self.assertEqual(result, foo_cpu(x)) x_cuda = x.cuda() result = foo(x_cuda) self.assertEqual(result, foo_cuda(x_cuda)) foo._destroy() @unittest.skipIf(not TEST_CUDA, "requires CUDA") def test_impl_multiple(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... @foo.impl(['cpu', 'cuda']) def foo_impl(x): return x.cos() x = torch.randn(3) result = foo(x) self.assertEqual(result, foo_impl(x)) x_cuda = x.cuda() result = foo(x_cuda) self.assertEqual(result, foo_impl(x_cuda)) foo._destroy() def test_impl_meta(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor, dim: int) -> torch.Tensor: ... @foo.impl_abstract() def foo_meta(x, dim): output_shape = list(x.shape) del output_shape[dim] return x.new_empty(output_shape) x = torch.randn(2, 3, device='meta') result = foo(x, 1) self.assertEqual(result.shape, foo_meta(x, 1).shape) foo._destroy() def test_duplicate_impl(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor, dim: int) -> torch.Tensor: ... @foo.impl_abstract() def foo_meta(x, dim): output_shape = list(x.shape) del output_shape[dim] return x.new_empty(output_shape) with self.assertRaisesRegex( RuntimeError, r"already has a abstract impl.*at .*test_python_dispatch.py:\d+"): @foo.impl_abstract() def foo_meta2(x, dim): output_shape = list(x.shape) del output_shape[dim] return x.new_empty(output_shape) foo._destroy() def test_new_data_dependent_symint(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... @foo.impl_abstract() def foo_meta(x): ctx = torch._custom_op.get_ctx() with self.assertRaisesRegex(ValueError, "greater than or equal to 2"): ctx.create_unbacked_symint(min=1) with self.assertRaisesRegex(ValueError, "greater than or equal to 2"): ctx.create_unbacked_symint(min=-1) with self.assertRaisesRegex(ValueError, "SymInt"): ctx.create_unbacked_symint(max=x.numel()) return torch.clone(x) x = torch.randn(2, 3, device='cpu') make_fx(foo, tracing_mode='symbolic')(x) foo._destroy() def test_meta_for_data_dependent_shape_operation(self): from torch.testing._internal.custom_op_db import numpy_nonzero x = torch.randn(10, device='meta') with self.assertRaisesRegex(RuntimeError, 'data-dependent output shape'): numpy_nonzero(x) def test_basic_make_fx(self): # More serious tests are in our CustomOp opinfo db, # this one is just a sanity check. @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... @foo.impl_abstract() def foo_meta(x): return x.sum() x = torch.randn(3) gm = make_fx(foo, tracing_mode='symbolic')(x) self.assertTrue(f'{TestCustomOp.test_ns}.foo' in gm.code) foo._destroy() def test_not_implemented_error(self): @custom_op(f'{TestCustomOp.test_ns}::foo') def foo(x: torch.Tensor) -> torch.Tensor: ... x = torch.randn(3) with self.assertRaisesRegex(NotImplementedError, "cpu impl registered"): foo(x) x = torch.randn(3, device='meta') with self.assertRaisesRegex(NotImplementedError, "abstract impl registered"): foo(x) @custom_op(f'{TestCustomOp.test_ns}::bar') def bar(sizes: Sequence[int]) -> torch.Tensor: ... with self.assertRaisesRegex(NotImplementedError, "no Tensor inputs"): bar((1, 2, 3)) def test_abstract_registration_location(self): loc = torch.testing._internal.custom_op_db.numpy_nonzero._get_impl('abstract').location matches = re.match(r'.*custom_op_db.py:\d+', loc) self.assertIsNotNone(matches) def test_data_dependent_basic(self): from torch.testing._internal.custom_op_db import numpy_nonzero def f(x): return numpy_nonzero(x) x = torch.randn(5, 5) gm = make_fx(f, tracing_mode='symbolic')(x) self.assertTrue('nonzero' in gm.code) def test_data_dependent_fake_tracing(self): from torch.testing._internal.custom_op_db import numpy_nonzero def f(x): return numpy_nonzero(x) x = torch.randn(5, 5) with self.assertRaises(torch._subclasses.fake_tensor.DynamicOutputShapeException): make_fx(f, tracing_mode='fake')(x) def test_symints(self): def f(x): return torch.testing._internal.custom_op_db.numpy_view_copy(x, x.shape) x = torch.randn(2, 3, 4) gm = make_fx(f, tracing_mode='symbolic')(x) result = gm(x) self.assertEqual(result, f(x)) self.assertExpectedInline(gm.code.strip(), """\ def forward(self, x_1): sym_size = torch.ops.aten.sym_size(x_1, 0) sym_size_1 = torch.ops.aten.sym_size(x_1, 1) sym_size_2 = torch.ops.aten.sym_size(x_1, 2) numpy_view_copy = torch.ops._torch_testing.numpy_view_copy.default(x_1, [sym_size, sym_size_1, sym_size_2]); x_1 = sym_size = sym_size_1 = sym_size_2 = None return numpy_view_copy""") # noqa: B950 @unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work on windows") def test_data_dependent_compile(self): import torch._dynamo.testing from torch._dynamo.utils import counters counters.clear() cnt = torch._dynamo.testing.CompileCounter() @torch.compile(backend=cnt) def f(x): return torch.ops._torch_testing.numpy_nonzero(x.clone()).clone() f(torch.randn(10)) self.assertEqual( dict(counters['graph_break']), {'dynamic shape operator: _torch_testing.numpy_nonzero.default': 1}, ) # pre-existing problem: torch.compile(dynamic=True) will, by default, # graph break on data-dependent operations. Eventually we'll make it so # that it never graph breaks on data-dependent operations. @unittest.expectedFailure def test_data_dependent_nms_dynamic_compile(self): import torch._dynamo.testing from torch._dynamo.utils import counters counters.clear() cnt = torch._dynamo.testing.CompileCounter() @torch.compile(backend=cnt, dynamic=True) def f(x, s, i): return torch.ops._torch_testing.numpy_nms(x.clone(), s, i).clone() f(torch.randn(20, 4), torch.randn(20), 0.1) self.assertEqual(len(counters['graph_break']), 0) class TestPythonDispatch(TestCase): def test_basic(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) log_input("x", x) y = x * x saved_x = y.grad_fn._saved_self grad_y = LoggingTensor(torch.tensor([1.0])) log_input("grad_y", grad_y) g, = torch.autograd.grad((y,), (x,), (grad_y,)) self.assertEqual(g.elem, torch.tensor([6.0])) with torch.no_grad(): self.assertEqual(saved_x, x) self.assertEqual(saved_x._version, x._version) x.add_(2) self.assertEqual(saved_x, x) # TODO: figure out why broken # self.assertEqual(saved_x._version, x._version) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten.mul.Tensor($0, $0) $2 = input('grad_y') True = torch._ops.aten.is_same_size.default($1, $2) $3 = torch._ops.aten.mul.Tensor($2, $0) $4 = torch._ops.aten.mul.Tensor($2, $0) $5 = torch._ops.aten.add.Tensor($4, $3)''') def test_out(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(1)) y = LoggingTensor(torch.zeros(1)) log_input("x", x) log_input("y", y) torch.abs(x, out=y) self.assertEqual(y.elem, torch.ones(1)) # TODO: arguably this shouldn't pass and we should complain # that out isn't a kwarg self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('y') $2 = torch._ops.aten.abs.out($0, out=$1)''') def test_kwarg_only(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(1)) y = LoggingTensor(torch.ones(1, 1)) z = LoggingTensor(torch.ones(1)) log_input("x", x) log_input("y", y) log_input("z", z) torch.addmv(x, y, z) torch.addmv(x, y, z, beta=1) torch.addmv(x, y, z, beta=2) torch.addmv(x, y, z, alpha=2) torch.addmv(x, y, z, beta=2, alpha=2) # The expectation is that beta/alpha don't show up when they're # defaulted. This is even if the user explicitly specified it. self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('y') $2 = input('z') $3 = torch._ops.aten.addmv.default($0, $1, $2) $4 = torch._ops.aten.addmv.default($0, $1, $2) $5 = torch._ops.aten.addmv.default($0, $1, $2, beta=2) $6 = torch._ops.aten.addmv.default($0, $1, $2, alpha=2) $7 = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)''') def test_kwarg_only_and_positional_default(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(1)) log_input("x", x) torch.ops.aten._foobar(x) torch.ops.aten._foobar(x, False) torch.ops.aten._foobar(x, arg3=False) torch.ops.aten._foobar(x, False, arg3=False) # What we are testing here is that we omit arg2 # if it is defaulted, even if a kwarg is set self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten._foobar.default($0) $2 = torch._ops.aten._foobar.default($0, False) $3 = torch._ops.aten._foobar.default($0, arg3=False) $4 = torch._ops.aten._foobar.default($0, False, arg3=False)''') def test_produce_real_type(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.ones(2, 2)) log_input("x", x) x.to(dtype=torch.double) # non-optional dtype torch.cumprod(x, 0, dtype=torch.double) # optional dtype x[:, 1].contiguous(memory_format=torch.contiguous_format) # optional memory format # There doesn't appear to be any layout signatures which are # triggerable using tensor subclasses (need to use a mode) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten._to_copy.default($0, dtype=torch.float64) $2 = torch._ops.aten.cumprod.default($0, 0, dtype=torch.float64) $3 = torch._ops.aten.slice.Tensor($0, 0, 0, 9223372036854775807) $4 = torch._ops.aten.select.int($3, 1, 1) $5 = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_format)''') def test_optional_tensor_list(self) -> None: def weird(xs): print("woof") return torch.empty(()) my_lib = Library("my_lib", "DEF") my_lib.define("weird(Tensor?[] self) -> Tensor") my_lib.impl("weird", weird, "CPU") with capture_logs() as logs: x = LoggingTensor(torch.ones(2, 2)) log_input("x", x) torch.ops.my_lib.weird.default([None, x]) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.my_lib.weird.default([None, LoggingTensor(tensor([[1., 1.], [1., 1.]]))])''') def test_list_ret(self) -> None: # test all sequence types are permissible returns for list_type in (list, tuple): class A(torch._C._TensorBase): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): if func.overloadpacket == torch.ops.aten.split: with no_dispatch(): return list_type(torch.split(*args)) else: raise AssertionError(f"unrecognized func: {func}") self.assertEqual( torch.split(A(torch.tensor([0, 1])), 2), torch.split(torch.tensor([0, 1]), 2) ) def test_invalid_ret(self) -> None: # test invalid return gets reasonable error message class A(torch._C._TensorBase): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return "arf" # Wobbles depending on NDEBUG mode of pybind11 self.assertRaisesRegex( RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(), ) self.assertRaisesRegex( RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(), ) def test_detach_appears_twice_when_called_once(self) -> None: with capture_logs() as logs: x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) log_input("x", x) x.detach() # FIXME: We actually want this to emit a single detach. However, # it currently emits two, for reasons unclear to us. Leaving # this test here to make sure we don't regress even further (it # would be bad if calling .detach() once emits 3+ detaches). self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = torch._ops.aten.detach.default($0) $2 = torch._ops.aten.detach.default($1)''') def test_storage(self) -> None: # For now, just make sure it doesn't crash. Ideally, we should # return some virtual storage that is safe to work with x = LoggingTensor(torch.ones(1)) self.assertRaises(RuntimeError, lambda: x.storage()) def test_make_wrapper_subclass_noalloc(self) -> None: # This is ludicrously big (8TB) and this should pass because wrapper # subclasses don't allocate torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,)) def test_version(self) -> None: x = LoggingTensor(torch.ones(1)) prev_vc = x._version x.detach().add_(2) cur_vc = x._version self.assertNotEqual(prev_vc, cur_vc) x.data.add_(2) self.assertEqual(cur_vc, x._version) def test_subclass_priority(self) -> None: class ErrorA(RuntimeError): pass class ErrorB(RuntimeError): pass # The big tests for code coverage are test_precedence_semantics in # test_overrides.py; this is just to make sure it is wired up at all # correctly for __torch_dispatch__ class A(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise ErrorA class B(A): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise ErrorB self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1)))) self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1)))) self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1)))) self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1)))) def test_format(self) -> None: x = LoggingTensor(torch.ones(1)) s1 = str(x) s2 = repr(x) s3 = f"{x}" self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""") self.assertEqual(s1, s2) self.assertEqual(s1, s3) def test_custom_autograd(self) -> None: escape = [None] class Square(torch.autograd.Function): @staticmethod def forward(ctx, x): y = x ** 2 ctx.save_for_backward(x) return y @staticmethod def backward(ctx, grad_output): assert isinstance(grad_output, LoggingTensor) x, = ctx.saved_tensors assert isinstance(x, LoggingTensor) escape[0] = x return grad_output * 2 * x with capture_logs() as logs: x = LoggingTensor(torch.ones(1), requires_grad=True) log_input("x", x) x.grad = LoggingTensor(torch.zeros(1)) log_input("x.grad", x.grad) y = Square.apply(x) grad_output = LoggingTensor(torch.ones(1)) log_input("grad_output", grad_output) y.backward(grad_output) with torch.no_grad(): self.assertEqual(escape[0], x) self.assertEqual(escape[0]._version, x._version) # TODO: figure out why x.requires_grad = False doesn't # trigger an error for LoggingTensor x.add_(2) self.assertEqual(escape[0], x) # TODO: figure out why this is broken # self.assertEqual(escape[0]._version, x._version) self.assertExpectedInline('\n'.join(logs), '''\ $0 = input('x') $1 = input('x.grad') $2 = torch._ops.aten.pow.Tensor_Scalar($0, 2) $3 = input('grad_output') True = torch._ops.aten.is_same_size.default($2, $3) $4 = torch._ops.aten.mul.Tensor($3, 2) $5 = torch._ops.aten.mul.Tensor($4, $0) $6 = torch._ops.aten.add_.Tensor($1, $5)''') def test_subclass_creation(self): # Make sure these statements runs without error # In particular checking that when internal detach returns # subclasses, these are cleanly overwritten. class Foo(torch.Tensor): pass err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor" with self.assertRaisesRegex(RuntimeError, err_msg): a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2))) with self.assertRaisesRegex(RuntimeError, err_msg): b = LoggingTensor(torch.rand(2)).as_subclass(Foo) with self.assertRaisesRegex(RuntimeError, err_msg): Foo(LoggingTensor(torch.rand(2))) with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"): torch.Tensor._make_wrapper_subclass(Foo, (2, 2)) def test_new_ones(self) -> None: class MyTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return MyTensor(3) self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor) def test_like(self) -> None: class MyTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return MyTensor(3) for f in ["empty", "ones", "rand", "randn", "zeros"]: f_name = f + "_like" self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor) self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor) self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor) def test_make_wrapper_subclass_propagates_metadata(self) -> None: class WrapperTensor(torch.Tensor): elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad, strides=elem.stride(), storage_offset=elem.storage_offset()) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise RuntimeError("NYI") # non-contiguous strides, non-zero storage offset x = torch.randn(4, 6).t().diagonal(offset=2) y = WrapperTensor(x) self.assertEqual(y.size(), x.size()) self.assertEqual(y.stride(), x.stride()) self.assertEqual(y.storage_offset(), x.storage_offset()) def test_wrapper_subclass_serializes(self) -> None: with tempfile.TemporaryFile() as f: x = LoggingTensor(torch.randn(3)) torch.save(x, f) f.seek(0) x_loaded = torch.load(f) self.assertTrue(type(x_loaded) is type(x)) self.assertEqual(x.elem, x_loaded.elem) self.assertFalse(x is x_loaded) def test_deepcopy_wrapper_subclass(self) -> None: x = LoggingTensor(torch.randn(3)) x_copy = deepcopy(x) self.assertTrue(type(x_copy) is type(x)) self.assertEqual(x.elem, x_copy.elem) self.assertFalse(x is x_copy) def test_deepcopy_wrapper_subclass_with_clone_returning_different_type(self) -> None: class MyWrapperTensor(torch.Tensor): elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad, strides=elem.stride(), storage_offset=elem.storage_offset()) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): if func.overloadpacket.__name__ == "clone": # Return a plain tensor from clone(). return args[0].elem.clone() raise RuntimeError("NYI") # NB: The default Tensor.__torch_function__ implementation called for deepcopy # disables __torch_function__ by the time we get to clone(), so there is no need to # explicitly disable __torch_function__ for this subclass. x = MyWrapperTensor(torch.randn(3)) with self.assertRaisesRegex(RuntimeError, "for which cloning returns another instance of the same subclass"): x_copy = deepcopy(x) def test_deepcopy_non_wrapper_subclass(self) -> None: # Ensure correct error is thrown for common error cases. class SubTensorError1(torch.Tensor): # Default implementation of new_empty() returns a plain tensor. pass class SubTensorError2(torch.Tensor): # new_empty() incorrectly returns a different type (i.e. a plain tensor). def new_empty(self, shape): return torch.Tensor(shape) for error_cls in [SubTensorError1, SubTensorError2]: x = error_cls(3) with self.assertRaisesRegex(RuntimeError, "for which that function returns another instance of the same subclass"): x_copy = deepcopy(x) # Ensure a correctly implemented new_empty() causes deepcopy() to work. class SubTensorSuccess(torch.Tensor): def new_empty(self, shape): return type(self)(shape) x = SubTensorSuccess(3) x_copy = deepcopy(x) self.assertIs(type(x_copy), type(x)) def test_index_put_where_only_index_is_subclass(self) -> None: called_funcs = [] class MyTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad ) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called_funcs.append(func) return MyTensor(torch.tensor(3)) x = torch.randn(3, 3) idxs = (MyTensor(torch.tensor(0)),) v = torch.randn(1) res = x.index_put_(idxs, v) self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default]) def test_torch_dispatch_mode_basic(self) -> None: with capture_logs(is_mode=True) as logs: with LoggingTensorMode(): torch.empty([]) self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""") def test_torch_dispatch_mode_unrelated_tensors(self) -> None: x = torch.randn([]) y = torch.randn([]) with capture_logs(is_mode=True) as logs: with LoggingTensorMode(): x + y self.assertExpectedInline('\n'.join(logs), """\ $2 = torch._ops.aten.add.Tensor($0, $1)""") def test_nested_push_logging_tensor_mode(self): x = torch.randn([]) y = torch.randn([]) with capture_logs(is_mode=True) as logs: with LoggingTensorMode(): with LoggingTensorMode(): torch.empty([]) x + y self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) $3 = torch._ops.aten.add.Tensor($1, $2) $3 = torch._ops.aten.add.Tensor($1, $2)""") def test_capture_logs_with_torch_dispatch_mode(self): x = torch.randn([]) y = torch.randn([]) with capture_logs_with_logging_tensor_mode() as logs: torch.empty([]) x + y self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) $3 = torch._ops.aten.add.Tensor($1, $2)""") x = torch.randn([]) y = torch.randn([]) with capture_logs_with_logging_tensor_mode() as logs1: with capture_logs_with_logging_tensor_mode() as logs2: torch.empty([]) x + y self.assertExpectedInline('\n'.join(logs2), """\ $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) $3 = torch._ops.aten.add.Tensor($1, $2) $3 = torch._ops.aten.add.Tensor($1, $2)""") self.assertEqual(logs1, logs2) def test_torch_dispatch_mode_subclass_priority(self) -> None: class ErrorA(RuntimeError): pass class ErrorB(RuntimeError): pass class A(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): with AMode(): raise ErrorA class B(A): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): with BMode(): func(*args, **kwargs) class AMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA class BMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorB a = A(torch.empty(1)) b = B(torch.empty(1)) with self.assertRaises(ErrorA): a + a with self.assertRaises(ErrorB): a + b # B has precedence over A due to the subclass relationship yet # modes take precedence over arguments with self.assertRaises(ErrorA): with AMode(): b + b with self.assertRaises(ErrorB): with BMode(): a + a with self.assertRaises(ErrorB): with BMode(): a + b def test_mode_with_make_subclass(self): class SubTensor(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) class BasicMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): return func(*args, **kwargs) x = torch.randn(3) with BasicMode(): y = SubTensor(x) self.assertIsInstance(y, SubTensor) def test_torch_dispatch_mode_respects_no_dispatch(self) -> None: with capture_logs(is_mode=True) as logs1: with LoggingTensorMode(): torch.ones([2, 3]) with no_dispatch(): torch.ones([2, 3]) with capture_logs(is_mode=True) as logs2: with LoggingTensorMode(): torch.ones([2, 3]) self.assertEqual(logs1, logs2) def test_shallow_copy_and_detach(self) -> None: seen = set() test_case = self class TestMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): tree_map_only(torch.Tensor, lambda t: test_case.assertIn(t, seen), (args, kwargs)) if kwargs is None: kwargs = {} r = func(*args, **kwargs) tree_map_only(torch.Tensor, lambda t: seen.add(t), r) return r with TestMode(): x = torch.randn(3, requires_grad=True) loss = (x * x).sum() loss.backward() def test_exception_handling(self): class A(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) class AMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): if func.__name__ == 'randn.default': raise RuntimeError() return A(torch.zeros(())) with AMode(): try: torch.randn(()) except RuntimeError: pass self.assertTrue(isinstance(torch.zeros(()), A)) def test_with_mode_created_separately(self): class ErrorA(RuntimeError): pass class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA() x = A() with self.assertRaises(ErrorA): with x: torch.empty([]) def test_with_nested_modes(self): class ErrorA(RuntimeError): def __init__(self, msg): super().__init__(msg) class A(TorchDispatchMode): def __init__(self, msg): self.msg = msg def __torch_dispatch__(self, func, types, args=(), kwargs=None): raise ErrorA(self.msg) with self.assertRaisesRegex(ErrorA, "layer2"): with A("layer1"): with A("layer2"): torch.empty([]) def test_make_subclass_with_modes(self): class ModeTensor(torch.Tensor): def __new__(cls, elem, mode): r = torch.Tensor._make_subclass(cls, elem, elem.requires_grad) r.elem = elem r.mode = mode return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): raise NotImplementedError("Shouldn't be here") class Mode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): def unwrap(e): if isinstance(e, ModeTensor): return e.elem else: return e def wrap(t): if isinstance(t, torch.Tensor): return ModeTensor(t, self) else: return t return wrap(func(*tuple(unwrap(a) for a in args), **kwargs)) class BasicMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): return func(*args, **kwargs) x = torch.tensor(4.) with Mode(): y = x + x z = y + y self.assertIsInstance(y, ModeTensor) self.assertIsInstance(z, ModeTensor) with Mode(): with BasicMode(): # we can't nest two modes that call make_subclass because it only accepts vanilla tensors y = x + x z = y + y self.assertIsInstance(y, ModeTensor) self.assertIsInstance(z, ModeTensor) assert self.assertRaisesRegex(RuntimeError, "subclass Mode but.* associated to a python object of type Mode") def test_notimplemented_mode(self): sub_count = 0 class PoliteMode(TorchDispatchMode): def __init__(self): self.pre_count = 0 self.post_count = 0 def __torch_dispatch__(self, func, types, args=(), kwargs=None): self.pre_count += 1 if any(t is not torch.Tensor for t in types): return NotImplemented self.post_count += 1 return func(*args, **kwargs) class SubTensor(torch.Tensor): def __new__(cls, elem): r = torch.Tensor._make_wrapper_subclass(cls, elem.shape) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): nonlocal sub_count sub_count += 1 def unwrap(t): if isinstance(t, SubTensor): return t.elem else: return t return func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) __torch_function__ = torch._C._disabled_torch_function_impl a = SubTensor(torch.randn(2)) with PoliteMode() as mode: a.abs() self.assertEqual(mode.pre_count, 2) self.assertEqual(mode.post_count, 1) self.assertEqual(sub_count, 1) # make sure this doesn't error with PoliteMode(): with PoliteMode(): a.abs() def test_nesting_same_mode(self): # If the pushed mode is the same instance as the current mode, we allow pushing an already active mode. with capture_logs(is_mode=True) as logs: with LoggingTensorMode() as reenabled: with reenabled: torch.empty([]) self.assertExpectedInline('\n'.join(logs), """\ $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""") def test_error_using_class_method_on_mode(self): class A(TorchDispatchMode): @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): return func(args, kwargs) x = torch.tensor(5.) with self.assertRaisesRegex(RuntimeError, "classmethod is not supported, please make it a plain method"): with A(): x + x def test_get_cur_mode(self): class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): pass self.assertEqual(_get_current_dispatch_mode(), None) with A() as mode1: self.assertEqual(_get_current_dispatch_mode(), mode1) with mode1: with A() as mode2: self.assertEqual(_get_current_dispatch_mode(), mode2) def test_get_mode_stack(self): class A(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): pass self.assertEqual(_get_current_dispatch_mode_stack(), []) with A() as mode1: self.assertEqual(_get_current_dispatch_mode_stack(), [mode1]) with mode1: with A() as mode2: self.assertEqual(_get_current_dispatch_mode_stack(), [mode1, mode2]) def test_all_same_mode(self): x = LoggingTensorMode() y = LoggingTensorMode() self.assertTrue(all_same_mode([x, x, x])) self.assertFalse(all_same_mode([x, None])) self.assertFalse(all_same_mode([x, y])) def test_tolist_numpy_with_torch_dispatch_mode(self) -> None: x = LoggingTensor(torch.tensor([2.0, 3.0])) with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."): x.tolist() with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."): x.numpy() with self.assertRaises(AssertionError): self.assertEqual(x, None) def test_record_stream(self) -> None: class TestMode(TorchDispatchMode): def __init__(self, testcase): self.testcase = testcase def __torch_dispatch__(self, func, types, args=(), kwargs=None): self.testcase.assertEqual(func.name(), "aten::record_stream") self.testcase.assertIsInstance(args[0], torch.Tensor) self.testcase.assertIsInstance(args[1], torch.Stream) self.testcase.assertEqual(args[1].stream_id, 1) self.testcase.assertEqual(args[1].device_index, 2) self.testcase.assertEqual(args[1].device_type, 3) t = torch.tensor(5.) s = torch.Stream(stream_id=1, device_index=2, device_type=3) with TestMode(self): t.record_stream(s) def test_return_stream(self) -> None: l_def = torch.library.Library("test_return_stream", "DEF") l_def.define("return_stream(Tensor self) -> Stream") l_impl = torch.library.Library("test_return_stream", "IMPL", "CPU") l_impl.impl("return_stream", lambda _: torch.Stream(stream_id=0, device_index=1, device_type=2)) class TestMode(TorchDispatchMode): def __torch_dispatch__(self, func, types, args=(), kwargs=None): return torch.Stream(stream_id=1, device_index=2, device_type=3) t = torch.tensor(5.) s = torch.ops.test_return_stream.return_stream(t) self.assertIsInstance(s, torch.Stream) self.assertEqual(s.stream_id, 0) self.assertEqual(s.device_index, 1) self.assertEqual(s.device_type, 2) with TestMode(): s = torch.ops.test_return_stream.return_stream(t) self.assertIsInstance(s, torch.Stream) self.assertEqual(s.stream_id, 1) self.assertEqual(s.device_index, 2) self.assertEqual(s.device_type, 3) def test_subclass_autograd_device_check(self) -> None: class NonWrapperSubclass(torch.Tensor): elem: torch.Tensor __slots__ = ['elem'] @staticmethod def __new__(cls, elem, *args, **kwargs): # Wrong device here! r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad) # ...the real tensor is held as an element on the tensor. r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(e): return e.elem if isinstance(e, NonWrapperSubclass) else e def wrap(e): return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))) logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs) return rs x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True)) y = torch.randn(2, requires_grad=True) z = x * y self.assertIsInstance(z, NonWrapperSubclass) z.sum().backward(torch.tensor(1)) self.assertEqual(x.grad, y) self.assertEqual(y.grad, x) def test_none_wrapping(self): # A Tensor subclass that returns None when doing add # See LoggingTensor above for more details on the subclass class SubclassWithNone(torch.Tensor): @staticmethod def __new__(cls, elem, *args, **kwargs): r = torch.Tensor._make_wrapper_subclass( cls, elem.size(), dtype=elem.dtype, layout=elem.layout, device=elem.device, requires_grad=elem.requires_grad ) r.elem = elem return r @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): def unwrap(e): return e.elem if isinstance(e, SubclassWithNone) else e def wrap(e): return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))) if func.overloadpacket.__name__ == "add": return None else: return rs x = SubclassWithNone(torch.rand(2)) # Make sure both run without error self.assertIsInstance(x * 2, SubclassWithNone) self.assertIsNone(x + 2) x.requires_grad_() out = x.acos().sum() # The backward of acos does add then rsqrt so here we make sure that the # undefined Tensor generated by the user code is nicely handled. # If acos formula changes in the future, this can be replaced by any other # function that does add then something in the backward in a composite way with self.assertRaisesRegex(RuntimeError, "but got None"): out.backward() def test_storage_can_be_converted_to_python_object(self): s = torch.Storage() z = LoggingTensor(torch.empty([])) z.set_(s) def test_autograd_in_attr(self): # We want the wrapped Tensor to require gradients! true_t = torch.rand(2, requires_grad=True) t = LoggingTensorReentrant(true_t) out = t + 2 self.assertFalse(out.requires_grad) self.assertIsNone(out.grad_fn) self.assertTrue(out.elem.requires_grad) self.assertIsNotNone(out.elem.grad_fn) with self.assertRaisesRegex(RuntimeError, "does not require grad"): out.sum().backward() out.elem.sum().backward() self.assertIsNone(t.grad) self.assertIsNotNone(t.elem.grad) def test_dispatch_super_call(self): called = [] class SubTensor(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called.append(func) return super().__torch_dispatch__(func, types, args, kwargs) x = torch.randn(2) y = torch.randn(2) self.assertEqual(SubTensor(x) + SubTensor(y), x + y) self.assertEqual(called, [torch.ops.aten.add.Tensor]) def test_dispatch_super_call_list_arg(self): called = [] class SubTensorWithListArg(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called.append(func) return super().__torch_dispatch__(func, types, list(args), kwargs) x = torch.randn(2) self.assertEqual(SubTensorWithListArg(x).neg(), x.neg()) self.assertEqual(called, [torch.ops.aten.neg.default]) def test_dispatch_super_dont_autograd(self): called = [] class SubTensor(torch.Tensor): @staticmethod def __new__(cls, elem): return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): called.append(func) # This argument still requires grad because it was passed # through directly... self.assertTrue(args[0].requires_grad) r = super().__torch_dispatch__(func, types, args, kwargs) # But the output better not require grad, because that means # you did autograd again in torch dispatch (oops) self.assertFalse(r.requires_grad) return r x = SubTensor(torch.randn(2, requires_grad=True)) x.neg() self.assertEqual(called, [torch.ops.aten.neg.default]) def test_set_data(self): called = 0 class SubTensor(torch.Tensor): __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): nonlocal called called += 1 return super().__torch_dispatch__(func, types, args, kwargs) x = SubTensor(torch.empty(2)) x.data self.assertEqual(called, 1) x.data = torch.empty(2) self.assertEqual(called, 1) x.data self.assertEqual(called, 2) self.assertIs(type(x), SubTensor) x.set_(torch.empty(2)) self.assertEqual(called, 3) x.data self.assertEqual(called, 4) self.assertIs(type(x), SubTensor) def test_construct_int_tensor(self): class SubTensor(torch.Tensor): pass # should not fail SubTensor(torch.zeros(2, dtype=torch.int)) def test_multiple_ops_subclass(self): # This is a Direct Subclass, don't do that! class MySubclass(torch.Tensor): @staticmethod def __new__(cls, elem): r = torch.Tensor._make_subclass(cls, elem) return r __torch_function__ = torch._C._disabled_torch_function_impl @classmethod def __torch_dispatch__(cls, func, types, args=(), kwargs=None): with no_dispatch(): return func(*args, **kwargs) x = MySubclass(torch.rand(2, 2, dtype=torch.complex64)) y = x.conj() # Details of the bug that this tests for: # Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU} # There are a few calls to the dispatcher that are going to happen here: # - call_exp: User calling exp on y # - PythonTLSSnapshot: records the TLS on entry and redispatch # - AutogradCPU: no input requires grad, so does nothing and redispatch # - Conjugate: no special implementation for exp: use the fallback that # first clone the Tensor (to materialize the conj) then redispatch # - call_clone: conjugate fallback calling clone on y # - PythonTLSSnapshot: records the TLS on entry and redispatch # - (AutogradCPU: skipped as autograd added itself to the exclude set above) # - Conjugate: special implementation for clone: just skip this key # - Python: Reset the TLS based on the snapshot above and call the user implementation (this # actually calls into the dispatcher again but since we disable both our keys # before, not detailed here) # - exit Python: restore the TLS and exit # - exit Conjugate: nothing was inplace so just exit # - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty # - Python: Reset the TLS again based on the snapshot. <- this used to fail # - More steps.... y.exp() @staticmethod def subclass_helper(cls, data, use_wrapper_subclass, **kwargs): if use_wrapper_subclass: kwargs["device"] = data.device kwargs["dtype"] = data.dtype kwargs["layout"] = data.layout kwargs["requires_grad"] = True return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs) # type: ignore[attr-defined] else: return torch.Tensor._make_subclass(cls, data, True, **kwargs) def test_is_contiguous_slow_path(self): data = torch.randn(3, 3) contiguous_data = data.clone() not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2)) for use_wrapper_subclass in [True, False]: class ExampleTensor1(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class ExampleTensor2(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.is_contiguous: return contiguous_data.is_contiguous() return NotImplemented class ExampleTensor3(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.is_contiguous: return not_contiguous_data.is_contiguous() return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.is_contiguous'" e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.is_contiguous() with self.assertRaisesRegex(TypeError, err_msg): e.contiguous() e = ExampleTensor2(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.is_contiguous(), True) e.contiguous() # this will just return the original TensorImpl since is_contiguous = True err_msg = "no implementation found for" e = ExampleTensor3(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.is_contiguous(), False) with self.assertRaisesRegex(TypeError, err_msg): e.contiguous() def test_fancy_strides(self): calls = [] class ExampleTensor(torch.Tensor): @staticmethod def __new__(cls, data): return TestPythonDispatch.subclass_helper(cls, data, False, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func in [ torch.ops.aten.is_contiguous.default, torch.ops.aten.is_contiguous.memory_format, torch.ops.aten.is_strides_like_format.default, torch.ops.aten.is_non_overlapping_and_dense.default, torch.ops.aten.stride.default ]: calls.append((func, list(args)[1:])) return None with no_dispatch(): return func(*args, **kwargs) e = ExampleTensor(torch.randn(2, 2)) self.assertFalse(e.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(calls, [(torch.ops.aten.is_contiguous.memory_format, [torch.channels_last])]) calls.clear() self.assertFalse(torch.ops.aten.is_strides_like_format.default(e, torch.channels_last)) self.assertEqual(calls, [(torch.ops.aten.is_strides_like_format.default, [torch.channels_last])]) calls.clear() self.assertTrue(torch.ops.aten.is_non_overlapping_and_dense.default(e)) self.assertEqual(calls, [(torch.ops.aten.is_non_overlapping_and_dense.default, [])]) def test_device_slowpath(self): for use_wrapper_subclass in [True]: class ExampleTensor1(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class ExampleTensor2(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.prim.device: return torch.device('meta') return NotImplemented class ExampleTensor3(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.prim.device: return torch.device('meta') return NotImplemented err_msg = "no implementation found for 'torch.ops.prim.device'" with self.assertRaisesRegex(TypeError, err_msg): e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) e.device() ten = torch.rand([1]) e = ExampleTensor2(torch.randn(3, 3, device='cpu'), use_wrapper_subclass) self.assertEqual(e.device.type, 'meta') self.assertEqual(ten.type_as(e).device.type, 'meta') e = ExampleTensor3(torch.randn(3, 3, device='cpu'), use_wrapper_subclass) self.assertEqual(e.device.type, 'meta') self.assertEqual(ten.type_as(e).device.type, 'meta') def test_dim_slowpath(self): data = torch.randn(3, 3) for use_wrapper_subclass in [True, False]: class DimNotImplementedTensor(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class DimImplementedTensor(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.dim: return data.dim() return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.dim'" e = DimNotImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.dim() t = DimImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(t.dim(), 2) def test_maybe_tuple_bug(self): class T(torch.Tensor): @classmethod def __torch_function__(cls, *args, **kwargs): pass a = torch.rand(3) a[[T(), T()]] def test_standard_is_not_subclass(self): # https://github.com/pytorch/pytorch/issues/79079 self.assertFalse(torch._C._dispatch_isTensorSubclassLike(torch.empty(0))) def test_strides_slow_path(self): for use_wrapper_subclass in [True, False]: class StridesNotImplemented(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class StridesCustomReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func == torch.ops.aten.sym_stride.default: return (4, 2) return NotImplemented class StridesDefaultReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func == torch.ops.aten.sym_stride.default: return None return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.sym_stride'" e = StridesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.stride() e = StridesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.stride(), (4, 2)) e = StridesDefaultReturn(torch.randn(6, 2), use_wrapper_subclass) self.assertEqual(e.stride(), (2, 1)) def test_sizes_slow_path(self): for use_wrapper_subclass in [True, False]: data = torch.randn(6, 2) class SizesNotImplemented(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.dim: return data.dim() return NotImplemented class SizesCustomReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.dim: return data.dim() if func.overloadpacket == torch.ops.aten.sym_size: return (5, 3) return NotImplemented class SizesDefaultReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.dim: return data.dim() if func.overloadpacket == torch.ops.aten.sym_size: return None return NotImplemented err_msg = "no implementation found for 'torch.ops.aten.sym_size'" e = SizesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.size() e = SizesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.size(), (5, 3)) e = SizesDefaultReturn(torch.randn(4, 2), use_wrapper_subclass) self.assertEqual(e.size(), (4, 2)) def test_data_ptr_respects_numel_slow_path(self): data = torch.randn(6, 2) class NumelDefaultReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.aten.dim: return data.dim() if func.overloadpacket == torch.ops.aten.sym_numel: numel_called[0] = True return None return NotImplemented for use_wrapper_subclass in (False, True): numel_called = [False] e = NumelDefaultReturn(torch.randn(2, 2), use_wrapper_subclass) e.data_ptr() self.assertTrue(numel_called[0]) def test_layout_slow_path(self): for use_wrapper_subclass in [True, False]: data = torch.randn(6, 2) class LayoutNotImplemented(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): return NotImplemented class LayoutCustomReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.prim.layout: return torch.sparse_csr return NotImplemented class LayoutDefaultReturn(torch.Tensor): @staticmethod def __new__(cls, data, wrapper): return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True) @classmethod def __torch_dispatch__(cls, func, types, args, kwargs): if func.overloadpacket == torch.ops.prim.layout: return data.layout return NotImplemented err_msg = "no implementation found for 'torch.ops.prim.layout'" e = LayoutNotImplemented(torch.randn(3, 3), use_wrapper_subclass) with self.assertRaisesRegex(TypeError, err_msg): e.layout e = LayoutCustomReturn(torch.randn(3, 3), use_wrapper_subclass) self.assertEqual(e.layout, torch.sparse_csr) e = LayoutDefaultReturn(torch.randn(4, 2), use_wrapper_subclass) self.assertEqual(e.layout, torch.strided) class TestPythonDispatcher(TestCase): def test_basic(self): x = torch.randn(2, requires_grad=True) r = torch._C._EnablePythonDispatcher() torch.add(x, x) def test_lstsq(self): a = torch.randn(4, 3) b = torch.rand(4, 3) expected_shape = torch.linalg.lstsq(a, b).solution.shape r = torch._C._EnablePythonDispatcher() python_disp_shape = torch.linalg.lstsq(a, b).solution.shape self.assertEqual(expected_shape, python_disp_shape) if __name__ == '__main__': run_tests()