#include "caffe2/operators/elementwise_logical_ops.h" namespace caffe2 { namespace { REGISTER_CPU_OPERATOR(Where, WhereOp); // Input: C, X, Y, output: Z OPERATOR_SCHEMA(Where) .NumInputs(3) .NumOutputs(1) .AllowInplace({{1, 2}}) .IdenticalTypeAndShapeOfInput(1) .SetDoc(R"DOC( Operator Where takes three input data (Tensor, Tensor, Tensor) and produces one output data (Tensor) where z = c ? x : y is applied elementwise. )DOC") .Input(0, "C", "input tensor containing booleans") .Input(1, "X", "input tensor") .Input(2, "Y", "input tensor") .Output(0, "Z", "output tensor"); SHOULD_NOT_DO_GRADIENT(Where); REGISTER_CPU_OPERATOR(IsMemberOf, IsMemberOfOp); // Input: X, output: Y OPERATOR_SCHEMA(IsMemberOf) .NumInputs(1) .NumOutputs(1) .TensorInferenceFunction( [](const OperatorDef&, const vector& input_types) { vector out(1); out[0] = input_types[0]; out[0].set_data_type(TensorProto_DataType::TensorProto_DataType_BOOL); return out; }) .Arg("value", "*(type: []; default: -)* List of values to check for membership.") .Arg("dtype", "*(type: TensorProto_DataType; default: -)* The data type for the elements of the output tensor. Strictly must be one of the types from DataType enum in TensorProto.") .SetDoc(R"DOC( The *IsMemberOf* op takes an input tensor *X* and a list of values as argument, and produces one output data tensor *Y*. The output tensor is the same shape as *X* and contains booleans. The output is calculated as the function *f(x) = x in value* and is applied to *X* elementwise. Github Links: - https://github.com/caffe2/caffe2/blob/master/caffe2/operators/elementwise_logical_ops.cc - https://github.com/caffe2/caffe2/blob/master/caffe2/operators/elementwise_logical_ops.h
Example **Code** ``` workspace.ResetWorkspace() op = core.CreateOperator( "IsMemberOf", ["X"], ["Y"], value=[0,2,4,6,8], ) // Use a not-empty tensor workspace.FeedBlob("X", np.array([0,1,2,3,4,5,6,7,8]).astype(np.int32)) print("X:\n", workspace.FetchBlob("X")) workspace.RunOperatorOnce(op) print("Y: \n", workspace.FetchBlob("Y")) ``` **Result** ``` // value=[0,2,4,6,8] X: [0 1 2 3 4 5 6 7 8] Y: [ True False True False True False True False True] ```
)DOC") .Input(0, "X", "Input tensor of any shape") .Output(0, "Y", "Output tensor (same size as X containing booleans)"); SHOULD_NOT_DO_GRADIENT(IsMemberOf); } // namespace template <> std::unordered_set& IsMemberOfValueHolder::get() { return int32_values_; } template <> std::unordered_set& IsMemberOfValueHolder::get() { return int64_values_; } template <> std::unordered_set& IsMemberOfValueHolder::get() { return bool_values_; } template <> std::unordered_set& IsMemberOfValueHolder::get() { return string_values_; } } // namespace caffe2