#pragma once // Parse arguments to Python functions implemented in C++ // This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles // the types relevant to PyTorch and distinguishes between overloaded function // signatures. // // Example: // // static PythonArgParser parser({ // "norm(Scalar p, int64_t dim, bool keepdim=False)", // "norm(Scalar p=2)", // }); // ParsedArgs<3> parsed_args; // auto r = parser.parse(args, kwargs, parsed_args); // if (r.idx == 0) { // norm(r.scalar(0), r.int64(1), r.bool(0)); // } else { // norm(r.scalar(0)); // } // // We auto-generate most uses of PythonArgParser; the generated files // are torch/csrc/autograd/generated/python_*.cpp // // Some gotchas that you should watch out for: // // - Note [Order of overloads matters] // Order of overloads matters. A set of input arguments may // bind to multiple argument specs; we will always pick the // first one in PythonArgParser. However, when you are writing // overloads in, e.g., native_functions.yaml, you don't have to // worry about what order you write them, because the code // generation logic always gives the overloads a canonical // order, where Tensor overloads come first, before Scalar overloads. // This logic is in sort_declarations in // tools/autograd/gen_python_functions.py // // - Zero-dim tensors (e.g., torch.tensor(2)) bind to both // Scalar and Tensor, UNLESS they require grad (in which case // they only bind to Tensor). #include "torch/csrc/python_headers.h" #include "torch/csrc/Device.h" #include "torch/csrc/Dtype.h" #include "torch/csrc/DynamicTypes.h" #include "torch/csrc/Exceptions.h" #include "torch/csrc/Generator.h" #include "torch/csrc/autograd/generated/VariableType.h" #include "torch/csrc/autograd/python_variable.h" #include "torch/csrc/jit/tracer.h" #include "torch/csrc/tensor/python_tensor.h" #include "torch/csrc/utils/numpy_stub.h" #include "torch/csrc/utils/object_ptr.h" #include "torch/csrc/utils/python_numbers.h" #include "torch/csrc/utils/python_strings.h" #include "torch/csrc/autograd/variable.h" #include #include #include #include #include #include #include namespace torch { enum class ParameterType { TENSOR, SCALAR, INT64, DOUBLE, TENSOR_LIST, INT_LIST, GENERATOR, BOOL, STORAGE, PYOBJECT, SCALARTYPE, LAYOUT, DEVICE, STRING }; struct FunctionParameter; struct FunctionSignature; struct PythonArgs; // Contains bound Python arguments in declaration order template struct ParsedArgs { PyObject* args[N]; }; struct PythonArgParser { explicit PythonArgParser(std::vector fmts, bool traceable=false); template inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs& dst); private: [[noreturn]] void print_error(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]); PythonArgs raw_parse(PyObject* args, PyObject* kwargs, PyObject* parsed_args[]); std::vector signatures_; std::string function_name; ssize_t max_args; bool traceable; }; struct PythonArgs { PythonArgs(int idx, bool traceable, const FunctionSignature& signature, PyObject** args) : idx(idx) , traceable(traceable) , signature(signature) , args(args) {} int idx; bool traceable; const FunctionSignature& signature; PyObject** args; inline at::Tensor tensor(int i); inline at::Scalar scalar(int i); inline at::Scalar scalarWithDefault(int i, at::Scalar default_scalar); inline std::vector tensorlist(int i); template inline std::array tensorlist_n(int i); inline std::vector intlist(int i); inline std::vector intlistWithDefault(int i, std::vector default_intlist); inline at::Generator* generator(int i); inline at::Storage storage(int i); inline at::ScalarType scalartype(int i); inline at::ScalarType scalartypeWithDefault(int i, at::ScalarType default_scalartype); inline c10::optional scalartypeOptional(int i); inline const THPLayout& layout(int i); inline const THPLayout& layoutWithDefault(int i, const THPLayout& default_layout); inline at::Device device(int i); inline at::Device deviceWithDefault(int i, const at::Device& default_device); inline c10::optional deviceOptional(int i); inline std::string string(int i); inline PyObject* pyobject(int i); inline int64_t toInt64(int i); inline int64_t toInt64WithDefault(int i, int64_t default_int); inline double toDouble(int i); inline double toDoubleWithDefault(int i, double default_double); inline bool toBool(int i); inline bool toBoolWithDefault(int i, bool default_bool); inline bool isNone(int i); }; struct FunctionSignature { explicit FunctionSignature(const std::string& fmt); bool parse(PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception); std::string toString() const; std::string name; std::vector params; ssize_t min_args; ssize_t max_args; ssize_t max_pos_args; bool hidden; bool deprecated; }; struct FunctionParameter { FunctionParameter(const std::string& fmt, bool keyword_only); bool check(PyObject* obj); void set_default_str(const std::string& str); std::string type_name() const; ParameterType type_; bool optional; bool allow_none; bool keyword_only; bool allow_numbers_as_tensors = false; int size; std::string name; // having this as a raw PyObject * will presumably leak it, but these are only held by static objects // anyway, and Py_Finalize can already be called when this is destructed. PyObject *python_name; at::Scalar default_scalar; std::vector default_intlist; union { bool default_bool; int64_t default_int; double default_double; at::ScalarType default_scalartype; THPLayout* default_layout; }; }; template inline PythonArgs PythonArgParser::parse(PyObject* args, PyObject* kwargs, ParsedArgs& dst) { if (N < max_args) { throw ValueError("PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)", (int)max_args, N); } return raw_parse(args, kwargs, dst.args); } inline at::Tensor PythonArgs::tensor(int i) { PyObject* obj = args[i]; if (!obj) return at::Tensor(); if (!THPVariable_Check(obj)) { at::Scalar scalar; if (THPUtils_checkLong(obj)) { scalar = at::Scalar(THPUtils_unpackLong(obj)); } else if (THPUtils_checkDouble(obj)) { scalar = at::Scalar(THPUtils_unpackDouble(obj)); } else { // NB: Are you here because you passed None to a Variable method, // and you expected an undefined tensor to be returned? Don't add // a test for Py_None here; instead, you need to mark the argument // as *allowing none*; you can do this by writing 'Tensor?' instead // of 'Tensor' in the ATen metadata. throw TypeError("expected Tensor as argument %d, but got %s", i, Py_TYPE(obj)->tp_name); } auto tensor = scalar_to_tensor(scalar); tensor.unsafeGetTensorImpl()->set_wrapped_number(true); return autograd::make_variable(tensor); } return reinterpret_cast(obj)->cdata; } inline at::Scalar PythonArgs::scalar(int i) { return scalarWithDefault(i, signature.params[i].default_scalar); } inline at::Scalar PythonArgs::scalarWithDefault(int i, at::Scalar default_scalar) { if (!args[i]) return default_scalar; // Zero-dim tensors are converted to Scalars as-is. Note this doesn't currently // handle most NumPy scalar types except np.float64. if (THPVariable_Check(args[i])) { return at::_local_scalar(((THPVariable*)args[i])->cdata); } if (THPUtils_checkLong(args[i])) { return at::Scalar(static_cast(THPUtils_unpackLong(args[i]))); } if (PyComplex_Check(args[i])) { return at::Scalar(THPUtils_unpackComplexDouble(args[i])); } return at::Scalar(THPUtils_unpackDouble(args[i])); } inline std::vector PythonArgs::tensorlist(int i) { if (!args[i]) return std::vector(); PyObject* arg = args[i]; auto tuple = PyTuple_Check(arg); auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg); std::vector res(size); for (int idx = 0; idx < size; idx++) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx); if (!THPVariable_Check(obj)) { throw TypeError("expected Tensor as element %d in argument %d, but got %s", idx, i, Py_TYPE(args[i])->tp_name); } res[idx] = reinterpret_cast(obj)->cdata; } return res; } template inline std::array PythonArgs::tensorlist_n(int i) { auto res = std::array(); PyObject* arg = args[i]; if (!arg) return res; auto tuple = PyTuple_Check(arg); auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg); if (size != N) { throw TypeError("expected tuple of %d elements but got %d", N, (int)size); } for (int idx = 0; idx < size; idx++) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx); if (!THPVariable_Check(obj)) { throw TypeError("expected Tensor as element %d in argument %d, but got %s", idx, i, Py_TYPE(args[i])->tp_name); } res[idx] = reinterpret_cast(obj)->cdata; } return res; } inline std::vector PythonArgs::intlist(int i) { return intlistWithDefault(i, signature.params[i].default_intlist); } inline std::vector PythonArgs::intlistWithDefault(int i, std::vector default_intlist) { if (!args[i]) return default_intlist; PyObject* arg = args[i]; auto size = signature.params[i].size; if (size > 0 && THPUtils_checkLong(arg)) { return std::vector(size, THPUtils_unpackIndex(arg)); } auto tuple = PyTuple_Check(arg); size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg); std::vector res(size); for (int idx = 0; idx < size; idx++) { PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx); try { // Elements of torch.Size are tensors during tracing, and we need to record extra // information before they are turned into an IntList if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) { auto & var = THPVariable_Unpack(obj); jit::tracer::ArgumentStash::stashIntListElem( signature.params[i].name, size, idx, var); res[idx] = var.item(); continue; } else { res[idx] = THPUtils_unpackIndex(obj); } } catch (std::runtime_error &e) { throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %d", signature.name.c_str(), signature.params[i].name.c_str(), signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1); } } return res; } inline at::ScalarType PythonArgs::scalartypeWithDefault(int i, at::ScalarType default_scalartype) { if (!args[i]) return default_scalartype; return scalartype(i); } inline at::ScalarType PythonArgs::scalartype(int i) { if (!args[i]) { auto scalartype = signature.params[i].default_scalartype; return (scalartype == at::ScalarType::Undefined) ? torch::tensors::get_default_tensor_type().scalarType() : scalartype; } return reinterpret_cast(args[i])->scalar_type; } inline c10::optional PythonArgs::scalartypeOptional(int i) { if (!args[i]) return c10::nullopt; return scalartype(i); } inline const THPLayout& PythonArgs::layout(int i) { if (!args[i]) return *signature.params[i].default_layout; return *reinterpret_cast(args[i]); } inline const THPLayout& PythonArgs::layoutWithDefault(int i, const THPLayout& default_layout) { if (!args[i]) return default_layout; return layout(i); } static std::string cuda_str = "cuda"; static std::string cpu_str = "cpu"; static std::string cuda_prefix = "cuda:"; static std::string cpu_prefix = "cpu:"; inline at::Device PythonArgs::device(int i) { if (!args[i]) { const auto& default_tensor_type = torch::tensors::get_default_tensor_type(); return at::Device(default_tensor_type.device_type()); } if (THPDevice_Check(args[i])) { const auto device = reinterpret_cast(args[i]); return device->device; } if (THPUtils_checkLong(args[i])) { const auto device_index = THPUtils_unpackLong(args[i]); AT_CHECK(device_index >= 0, "Device index must not be negative"); return at::Device(at::DeviceType::CUDA, device_index); } const std::string device_str = THPUtils_unpackString(args[i]); if (device_str == cpu_str) { return at::Device(at::DeviceType::CPU); } else if (device_str == cuda_str) { return at::Device(at::DeviceType::CUDA); } else if (device_str.compare(0, cpu_prefix.length(), cpu_prefix) == 0) { const auto device_index = std::stoi(device_str.substr(cpu_prefix.length())); AT_CHECK(device_index >= 0, "Device index must not be negative"); return at::Device(at::DeviceType::CPU, device_index); } else if (device_str.compare(0, cuda_prefix.length(), cuda_prefix) == 0) { const auto device_index = std::stoi(device_str.substr(cuda_prefix.length())); AT_CHECK(device_index >= 0, "Device index must not be negative"); return at::Device(at::DeviceType::CUDA, device_index); } throw torch::TypeError("only \"cuda\" and \"cpu\" are valid device types, got %s", device_str.c_str()); } inline at::Device PythonArgs::deviceWithDefault(int i, const at::Device& default_device) { if (!args[i]) return default_device; return device(i); } inline c10::optional PythonArgs::deviceOptional(int i) { if (!args[i]) return c10::nullopt; return device(i); } inline std::string PythonArgs::string(int i) { if (!args[i]) return ""; return THPUtils_unpackString(args[i]); } inline int64_t PythonArgs::toInt64(int i) { if (!args[i]) return signature.params[i].default_int; return THPUtils_unpackLong(args[i]); } inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) { if (!args[i]) return default_int; return toInt64(i); } inline double PythonArgs::toDouble(int i) { if (!args[i]) return signature.params[i].default_double; return THPUtils_unpackDouble(args[i]); } inline double PythonArgs::toDoubleWithDefault(int i, double default_double) { if (!args[i]) return default_double; return toDouble(i); } inline bool PythonArgs::toBool(int i) { if (!args[i]) return signature.params[i].default_bool; return args[i] == Py_True; } inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) { if (!args[i]) return default_bool; return toBool(i); } inline bool PythonArgs::isNone(int i) { return args[i] == nullptr; } inline at::Generator* PythonArgs::generator(int i) { if (!args[i]) return nullptr; return reinterpret_cast(args[i])->cdata; } inline at::Storage PythonArgs::storage(int i) { if (!args[i]) return at::Storage(); return createStorage(args[i]); } inline PyObject* PythonArgs::pyobject(int i) { if (!args[i]) return Py_None; return args[i]; } } // namespace torch