#pragma once #include #include #include #include #include #include #include #include #include #include #include #include namespace torch { namespace jit { struct Graph; }} namespace torch { namespace autograd { // A Function which is implemented by a Python object (i.e., a THPFunction). // Calls to 'apply' are forwarded to the Python method implementation. struct PyNode : public Node { PyNode(THPObjectPtr obj) : obj(obj.release()) {} variable_list apply(variable_list&& inputs) override; // Throw a python_error with the PyErr state persisted, so that we // don't lose the error state if the GIL is released when we don't // have a PyThreadState created beforehand, this is made so that // even for pure C++ thread without a pre-created PyThreadState could // also capture the correct error message. // TODO: This is a temporary approach to allow C++ thread to correctly // capture Python Error in autograd, remove this when c10 thread pool // allow to do one time initialization. // see discussion in https://github.com/pytorch/pytorch/pull/34845 // Follow up issue: https://github.com/pytorch/pytorch/issues/35006 void throw_python_error(); void release_variables() override; std::string name() const override; bool is_traceable() override; // THPFunction this Function is wrapping. Owning! PyObject* obj; // NOLINTNEXTLINE(modernize-use-override) ~PyNode() { // Can't use THPObjectPtr as a field in this class; destructor won't take // out GIL! When I forgot to do this by hand // TestAutograd.test_inplace_view_python called me out about it. // If python is already dead, leak the wrapped python objects if (Py_IsInitialized()) { pybind11::gil_scoped_acquire gil; Py_DECREF(obj); } } }; /** * Cast an object into a tuple, if it is not a tuple already. Returns true * if the original object was not a tuple. */ inline bool ensure_tuple(THPObjectPtr& obj) { if (PyTuple_Check(obj.get())) return false; PyObject *tuple = PyTuple_New(1); if (!tuple) throw python_error(); PyTuple_SET_ITEM(tuple, 0, obj.release()); obj = tuple; return true; } }} // namespace torch::autograd struct THPFunction { PyObject_HEAD PyObject *needs_input_grad; // Python tuple of tensors whose variables we should save. Set // by Python with 'save_for_backward'. If nullptr, no tensors were // saved. PyObject *to_save; // Python tuple of tensors which are not differentiable. Set by // Python with 'mark_non_differentiable'. If nullptr, no tensors were // non-differentiable. PyObject *non_differentiable; // Python tuple of tensors which had inplace updates in the forward() // pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were // modified inplace. PyObject *dirty_tensors; // boolean indicating whether to materialize undefined output grad tensors // into tensors full of zeros. Set by Python with 'set_materialize_grads'. // Default is true. bool materialize_grads; std::vector output_info; std::vector input_info; std::vector saved_variables; // For each input, true if the input is a THPVariable std::vector is_variable_input; char has_freed_buffers; // The actual PyNode (in the autograd graph) that this data was // saved for. This field may be NULL (because a user can construct // a THPFunction directly from Python), but when this field is non-NULL, // it is guaranteed that cdata.lock()->obj == this // // In most ordinary use, this field should always be non-NULL; e.g., // when we allocate a THPFunction because we are running Node.apply, // after constructing a THPFunction, we immediately allocate a PyNode // for it. We can't enforce this directly in the constructor of // THPFunction though, because there's no way to keep it live long enough // to save an owning reference to PyNode into the grad_fn of a Variable. std::weak_ptr cdata; }; bool THPFunction_initModule(PyObject *module); // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) extern PyTypeObject THPFunctionType; // NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) extern PyObject *THPFunctionClass; inline bool THPFunction_Check(PyObject* obj) { return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType); }