from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import core from caffe2.python.cnn import CNNModelHelper def recurrent_net( net, cell_net, inputs, initial_cell_inputs, links, timestep=None, scope=None, outputs_with_grads=(0,) ): ''' net: the main net operator should be added to cell_net: cell_net which is executed in a recurrent fasion inputs: sequences to be fed into the recurrent net. Currently only one input is supported. It has to be in a format T x N x (D1...Dk) where T is lengths of the sequence. N is a batch size and (D1...Dk) are the rest of dimentions initial_cell_inputs: inputs of the cell_net for the 0 timestamp. Format for each input is: (cell_net_input_name, external_blob_with_data) links: a dictionary from cell_net input names in moment t+1 and output names of moment t. Currently we assume that each output becomes an input for the next timestep. timestep: name of the timestep blob to be used. If not provided "timestep" is used. scope: Internal blobs are going to be scoped in a format / If not provided we generate a scope name automatically outputs_with_grads : position indices of output blobs which will receive error gradient (from outside recurrent network) during backpropagation ''' assert len(inputs) == 1, "Only one input blob is supported so far" input_blobs = [str(i[0]) for i in inputs] initial_input_blobs = [str(x[1]) for x in initial_cell_inputs] op_name = net.NextName('recurrent') def s(name): # We have to manually scope due to our internal/external blob # relationships. scope_name = op_name if scope is None else scope return "{}/{}".format(str(scope_name), str(name)) # determine inputs that are considered to be references # it is those that are not referred to in inputs or initial_cell_inputs known_inputs = map(str, input_blobs + initial_input_blobs) known_inputs += [str(x[0]) for x in initial_cell_inputs] if timestep is not None: known_inputs.append(str(timestep)) references = [ b for b in cell_net.Proto().external_input if b not in known_inputs] inner_outputs = list(cell_net.Proto().external_output) # These gradients are expected to be available during the backward pass inner_outputs_map = {o: o + '_grad' for o in inner_outputs} # compute the backward pass of the cell net backward_ops, backward_mapping = core.GradientRegistry.GetBackwardPass( cell_net.Proto().op, inner_outputs_map) backward_mapping = {str(k): str(v) for k, v in backward_mapping.items()} backward_cell_net = core.Net("RecurrentBackwardStep") del backward_cell_net.Proto().op[:] backward_cell_net.Proto().op.extend(backward_ops) # compute blobs used but not defined in the backward pass ssa, _ = core.get_ssa(backward_cell_net.Proto()) undefined = core.get_undefined_blobs(ssa) # also add to the output list the intermediate outputs of fwd_step that # are used by backward. ssa, blob_versions = core.get_ssa(cell_net.Proto()) scratches = [ blob for (blob, ver) in blob_versions.items() if ver > 0 and blob in undefined and blob not in cell_net.Proto().external_output] backward_cell_net.Proto().external_input.extend(scratches) all_inputs = [i[1] for i in inputs] + [ x[1] for x in initial_cell_inputs] + references all_outputs = [] cell_net.Proto().type = 'simple' backward_cell_net.Proto().type = 'simple' # Internal arguments used by RecurrentNetwork operator # Links are in the format blob_name, recurrent_states, offset. # In the moment t we know that corresponding data block is at # t + offset position in the recurrent_states tensor forward_links = [] backward_links = [] # Aliases are used to expose outputs to external world # Format (internal_blob, external_blob, offset) # Negative offset stands for going from the end, # positive - from the beginning aliases = [] # States held inputs to the cell net recurrent_states = [] for cell_input, _ in initial_cell_inputs: cell_input = str(cell_input) # Recurrent_states is going to be (T + 1) x ... # It stores all inputs and outputs of the cell net over time. # Or their gradients in the case of the backward pass. state = s(cell_input + "_states") states_grad = state + "_grad" cell_output = links[str(cell_input)] forward_links.append((cell_input, state, 0)) forward_links.append((cell_output, state, 1)) backward_links.append((cell_input + "_grad", states_grad, 0)) backward_links.append((cell_output + "_grad", states_grad, 1)) backward_cell_net.Proto().external_input.append( str(cell_output) + "_grad") aliases.append((state, cell_output + "_all", 1)) aliases.append((state, cell_output + "_last", -1)) all_outputs.extend([cell_output + "_all", cell_output + "_last"]) recurrent_states.append(state) for input_id, (input_t, input_blob) in enumerate(inputs): forward_links.append((str(input_t), str(input_blob), 0)) backward_links.append(( backward_mapping[str(input_t)], str(input_blob) + "_grad", 0 )) backward_cell_net.Proto().external_input.extend( cell_net.Proto().external_input) backward_cell_net.Proto().external_input.extend( cell_net.Proto().external_output) def unpack_triple(x): if x: a, b, c = zip(*x) return a, b, c return [], [], [] # Splitting to separate lists so we can pass them to c++ # where we ensemle them back link_internal, link_external, link_offset = unpack_triple(forward_links) backward_link_internal, backward_link_external, backward_link_offset = \ unpack_triple(backward_links) alias_src, alias_dst, alias_offset = unpack_triple(aliases) params = [x for x in references if x in backward_mapping.keys()] recurrent_inputs = [str(x[1]) for x in initial_cell_inputs] results = net.RecurrentNetwork( all_inputs, all_outputs + [s("step_workspaces")], param=map(all_inputs.index, params), alias_src=alias_src, alias_dst=map(str, alias_dst), alias_offset=alias_offset, recurrent_states=recurrent_states, initial_recurrent_state_ids=map(all_inputs.index, recurrent_inputs), link_internal=map(str, link_internal), link_external=map(str, link_external), link_offset=link_offset, backward_link_internal=map(str, backward_link_internal), backward_link_external=map(str, backward_link_external), backward_link_offset=backward_link_offset, step_net=str(cell_net.Proto()), backward_step_net=str(backward_cell_net.Proto()), timestep="timestep" if timestep is None else str(timestep), outputs_with_grads=outputs_with_grads, ) # The last output is a list of step workspaces, # which is only needed internally for gradient propogation return results[:-1] def LSTM(model, input_blob, seq_lengths, initial_states, dim_in, dim_out, scope, outputs_with_grads=(0,)): ''' Adds a standard LSTM recurrent network operator to a model. model: CNNModelHelper object new operators would be added to input_blob: the input sequence in a format T x N x D where T is sequence size, N - batch size and D - input dimention seq_lengths: blob containing sequence lengths which would be passed to LSTMUnit operator initial_states: a tupple of (hidden_input_blob, cell_input_blob) which are going to be inputs to the cell net on the first iteration dim_in: input dimention dim_out: output dimention outputs_with_grads : position indices of output blobs which will receive external error gradient during backpropagation ''' def s(name): # We have to manually scope due to our internal/external blob # relationships. return "{}/{}".format(str(scope), str(name)) """ initial bulk fully-connected """ input_blob = model.FC( input_blob, s('i2h'), dim_in=dim_in, dim_out=4 * dim_out, axis=2) """ the step net """ step_model = CNNModelHelper(name='lstm_cell', param_model=model) input_t, timestep, cell_t_prev, hidden_t_prev = ( step_model.net.AddExternalInputs( 'input_t', 'timestep', 'cell_t_prev', 'hidden_t_prev')) gates_t = step_model.FC( hidden_t_prev, s('gates_t'), dim_in=dim_out, dim_out=4 * dim_out, axis=2) step_model.net.Sum([gates_t, input_t], gates_t) hidden_t, cell_t = step_model.net.LSTMUnit( [hidden_t_prev, cell_t_prev, gates_t, seq_lengths, timestep], [s('hidden_t'), s('cell_t')], ) step_model.net.AddExternalOutputs(cell_t, hidden_t) """ recurrent network """ (hidden_input_blob, cell_input_blob) = initial_states output, last_output, all_states, last_state = recurrent_net( net=model.net, cell_net=step_model.net, inputs=[(input_t, input_blob)], initial_cell_inputs=[ (hidden_t_prev, hidden_input_blob), (cell_t_prev, cell_input_blob), ], links={ hidden_t_prev: hidden_t, cell_t_prev: cell_t, }, timestep=timestep, scope=scope, outputs_with_grads=outputs_with_grads, ) return output, last_output, all_states, last_state