from tools.codegen.model import * from tools.codegen.api.types import CppArgument, DispatcherExpr, TensorOptionsArguments, \ DispatcherArgument, ThisArgument, LegacyDispatcherArgument import tools.codegen.api.cpp as cpp import tools.codegen.api.legacy_dispatcher as legacy_dispatcher import tools.codegen.local as local import itertools from typing import Sequence, Optional # This file describes the translation of JIT schema to the dispatcher # API, the *unboxed* calling convention by which invocations through # the dispatcher are made. Historically, the dispatcher API matched # the C++ API, but with the establishment of the boxed API, we've # made changes to the dispatcher API to so that the unboxed API # better aligns with the boxed API. The dispatcher API hooks heavily # into our template based boxing/unboxing machinery, so changes # to this convention will usually need template updates too. # # Prominent characteristics of the dispatcher API: # # - 'use_c10_dispatcher: full' controls whether or not we actually # use the modern calling convention or not. When use_c10_dispatcher # is not enabled, we don't use the template machinery. # # - dtype, layout, device and pin_memory are represented as separate # arguments. # def argumenttype_type(t: Type, *, mutable: bool) -> str: if local.use_c10_dispatcher() is UseC10Dispatcher.full: # This is a faux amis. If it makes sense in the future to add # more special cases here, or invert things so cpp.argument_type # calls this, or just completely inline the function, please do # it. return cpp.argumenttype_type(t, mutable=mutable) else: # This is real sharing. If you're modifying this path, ask # yourself why you are changing the legacy dispatcher protocol # here and not in legacy_dispatcher. return legacy_dispatcher.argumenttype_type(t, mutable=mutable) def argument_type(a: Argument) -> str: return argumenttype_type(a.type, mutable=a.is_write) def returns_type(rs: Sequence[Return]) -> str: # At present, there is no difference. But there could be! return cpp.returns_type(rs) def argument(a: Argument) -> DispatcherArgument: if local.use_c10_dispatcher() is UseC10Dispatcher.full: return DispatcherArgument( type=argument_type(a), name=a.name, argument=a, ) else: la = legacy_dispatcher.argument(a) return DispatcherArgument( type=la.type, name=la.name, argument=la.argument, ) def arguments(func: FunctionSchema) -> Sequence[DispatcherArgument]: if local.use_c10_dispatcher() is UseC10Dispatcher.full: return list(map(argument, itertools.chain(func.out_arguments, func.arguments, func.kwarg_only_arguments))) else: return [ DispatcherArgument(type=la.type, name=la.name, argument=la.argument) for la in legacy_dispatcher.arguments(func) ] # Given a set of CppArguments in scope, return a sequence of dispatcher # expressions that translate the cpp API into dispatcher API def cppargument_exprs(a: CppArgument, *, tensor_options: Optional[CppArgument]) -> Sequence[DispatcherExpr]: if isinstance(a.argument, TensorOptionsArguments): if local.use_c10_dispatcher() is UseC10Dispatcher.full: ta = a.argument return [ DispatcherExpr(type=argument_type(ta.dtype), expr=f'optTypeMetaToScalarType({a.name}.dtype_opt())'), DispatcherExpr(type=argument_type(ta.layout), expr=f'{a.name}.layout_opt()'), DispatcherExpr(type=argument_type(ta.device), expr=f'{a.name}.device_opt()'), DispatcherExpr(type=argument_type(ta.pin_memory), expr=f'{a.name}.pinned_memory_opt()'), # weird discrep ] else: return [DispatcherExpr(type='const TensorOptions &', expr=a.name)] elif isinstance(a.argument, Argument): if a.name == 'memory_format' and tensor_options is not None and local.use_c10_dispatcher() is UseC10Dispatcher.full: return [DispatcherExpr( type=argument_type(a.argument), expr=f'c10::impl::check_tensor_options_and_extract_memory_format({tensor_options.name}, {a.name})') ] else: return [DispatcherExpr(type=argument_type(a.argument), expr=a.name)] elif isinstance(a.argument, ThisArgument): return [DispatcherExpr(type=argument_type(a.argument.argument), expr=a.name)] else: assert_never(a.argument) def cpparguments_exprs(args: Sequence[CppArgument]) -> Sequence[DispatcherExpr]: tensor_options = next((a for a in args if isinstance(a.argument, TensorOptionsArguments)), None) return [r for a in args for r in cppargument_exprs(a, tensor_options=tensor_options)] # I don't think this is entirely sound, but it should be reasonably # close def legacydispatcherarguments_exprs(args: Sequence[LegacyDispatcherArgument]) -> Sequence[DispatcherExpr]: return cpparguments_exprs([CppArgument(type=a.type, name=a.name, default=None, argument=a.argument) for a in args])