## @package optimizer_test_util # Module caffe2.python.optimizer_test_util from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.python import core, workspace, cnn class OptimizerTestBase(object): """ This is an abstract base class. Don't inherit from unittest.TestCase, and don't name it 'Test*'. Do, however, do these things in classes which inherit from this. """ def testDense(self): perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32) np.random.seed(123) # make test deterministic data = np.random.randint( 2, size=(20, perfect_model.size)).astype(np.float32) label = np.dot(data, perfect_model)[:, np.newaxis] model = cnn.CNNModelHelper("NCHW", name="test") out = model.FC( 'data', 'fc', perfect_model.size, 1, ('ConstantFill', {}), ('ConstantFill', {}), axis=0 ) sq = model.SquaredL2Distance([out, 'label']) loss = model.AveragedLoss(sq, "avg_loss") grad_map = model.AddGradientOperators([loss]) self.assertIsInstance(grad_map['fc_w'], core.BlobReference) optimizer = self.build_optimizer(model) workspace.FeedBlob('data', data[0]) workspace.FeedBlob('label', label[0]) workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net, True) for _ in range(2000): idx = np.random.randint(data.shape[0]) workspace.FeedBlob('data', data[idx]) workspace.FeedBlob('label', label[idx]) workspace.RunNet(model.net.Proto().name) np.testing.assert_allclose( perfect_model[np.newaxis, :], workspace.FetchBlob('fc_w'), atol=1e-2 ) self.check_optimizer(optimizer) def testSparse(self): # to test duplicated indices we assign two indices to each weight and # thus each weight might count once or twice DUPLICATION = 2 perfect_model = np.array([2, 6, 5, 0, 1]).astype(np.float32) np.random.seed(123) # make test deterministic data = np.random.randint( 2, size=(20, perfect_model.size * DUPLICATION)).astype(np.float32) label = np.dot(data, np.repeat(perfect_model, DUPLICATION)) model = cnn.CNNModelHelper("NCHW", name="test") # imitate what model wrapper does w = model.param_init_net.ConstantFill( [], 'w', shape=[perfect_model.size], value=0.0) model.params.append(w) picked = model.net.Gather([w, 'indices'], 'gather') out = model.ReduceFrontSum(picked, 'sum') sq = model.SquaredL2Distance([out, 'label']) loss = model.AveragedLoss(sq, "avg_loss") grad_map = model.AddGradientOperators([loss]) self.assertIsInstance(grad_map['w'], core.GradientSlice) optimizer = self.build_optimizer(model) workspace.CreateBlob('indices') workspace.CreateBlob('label') for indices_type in [np.int32, np.int64]: workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net, True) for _ in range(2000): idx = np.random.randint(data.shape[0]) # transform into indices of binary features indices = np.repeat(np.arange(perfect_model.size), DUPLICATION)[data[idx] == 1] if indices.size == 0: continue workspace.FeedBlob( 'indices', indices.reshape((indices.size,)).astype(indices_type) ) workspace.FeedBlob('label', np.array(label[idx]).astype(np.float32)) workspace.RunNet(model.net.Proto().name) np.testing.assert_allclose( perfect_model, workspace.FetchBlob('w'), atol=1e-2 ) self.check_optimizer(optimizer)