.. role:: hidden :class: hidden-section torch.backends ============== .. automodule:: torch.backends `torch.backends` controls the behavior of various backends that PyTorch supports. These backends include: - ``torch.backends.cuda`` - ``torch.backends.cudnn`` - ``torch.backends.mkl`` - ``torch.backends.mkldnn`` - ``torch.backends.openmp`` torch.backends.cuda ^^^^^^^^^^^^^^^^^^^ .. automodule:: torch.backends.cuda .. autofunction:: torch.backends.cuda.is_built .. attribute:: torch.backends.cuda.matmul.allow_tf32 A :class:`bool` that controls whether TensorFloat-32 tensor cores may be used in matrix multiplications on Ampere or newer GPUs. See :ref:`tf32_on_ampere`. .. attribute:: torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction A :class:`bool` that controls whether reduced precision reductions (e.g., with fp16 accumulation type) are allowed with fp16 GEMMs. .. attribute:: torch.backends.cuda.cufft_plan_cache ``cufft_plan_cache`` caches the cuFFT plans .. attribute:: size A readonly :class:`int` that shows the number of plans currently in the cuFFT plan cache. .. attribute:: max_size A :class:`int` that controls cache capacity of cuFFT plan. .. method:: clear() Clears the cuFFT plan cache. .. autofunction:: torch.backends.cuda.preferred_linalg_library torch.backends.cudnn ^^^^^^^^^^^^^^^^^^^^ .. automodule:: torch.backends.cudnn .. autofunction:: torch.backends.cudnn.version .. autofunction:: torch.backends.cudnn.is_available .. attribute:: torch.backends.cudnn.enabled A :class:`bool` that controls whether cuDNN is enabled. .. attribute:: torch.backends.cudnn.allow_tf32 A :class:`bool` that controls where TensorFloat-32 tensor cores may be used in cuDNN convolutions on Ampere or newer GPUs. See :ref:`tf32_on_ampere`. .. attribute:: torch.backends.cudnn.deterministic A :class:`bool` that, if True, causes cuDNN to only use deterministic convolution algorithms. See also :func:`torch.are_deterministic_algorithms_enabled` and :func:`torch.use_deterministic_algorithms`. .. attribute:: torch.backends.cudnn.benchmark A :class:`bool` that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest. .. attribute:: torch.backends.cudnn.benchmark_limit A :class:`int` that specifies the maximum number of cuDNN convolution algorithms to try when `torch.backends.cudnn.benchmark` is True. Set `benchmark_limit` to zero to try every available algorithm. Note that this setting only affects convolutions dispatched via the cuDNN v8 API. torch.backends.mps ^^^^^^^^^^^^^^^^^^ .. automodule:: torch.backends.mps .. autofunction:: torch.backends.mps.is_available .. autofunction:: torch.backends.mps.is_built torch.backends.mkl ^^^^^^^^^^^^^^^^^^ .. automodule:: torch.backends.mkl .. autofunction:: torch.backends.mkl.is_available torch.backends.mkldnn ^^^^^^^^^^^^^^^^^^^^^ .. automodule:: torch.backends.mkldnn .. autofunction:: torch.backends.mkldnn.is_available torch.backends.openmp ^^^^^^^^^^^^^^^^^^^^^ .. automodule:: torch.backends.openmp .. autofunction:: torch.backends.openmp.is_available .. Docs for other backends need to be added here. .. Automodules are just here to ensure checks run but they don't actually .. add anything to the rendered page for now. .. py:module:: torch.backends.quantized .. py:module:: torch.backends.xnnpack