# The purpose of this test is to check that we have implementation parity between # a Python `torch.nn` module and its corresponding C++ `torch::nn` module. Concretely, # this test does the following: # # 1. Get a test params dict from common_nn.py, run forward and backward on the # Python module created using the test params. # # 2. Serialize the Python module's parameters / buffers and its forward input # arguments, deserialize them in C++ and load them into the C++ module. # # 3. Run the same forward and backward passes on the C++ module, and serialize # the C++ module's forward output and backward gradients. # # 4. Compare Python/C++ module's forward output and backward gradients. If they # are the same, then we have implementation parity between Python/C++ module. import tempfile from string import Template import types import pprint import os import torch from cpp_api_parity.utils import TorchNNModuleTestParams, TORCH_NN_COMMON_TEST_HARNESS, \ compile_cpp_code_inline, set_python_tensors_requires_grad, move_python_tensors_to_device, \ add_test, compute_cpp_args_construction_stmts_and_forward_arg_symbols, serialize_arg_dict_as_script_module, \ compute_arg_dict, decorate_test_fn, compute_temp_file_path, generate_error_msg, is_torch_nn_functional_test, \ try_remove_folder from cpp_api_parity.sample_module import SAMPLE_MODULE_CPP_SOURCE # Expected substitutions: # # ${module_variant_name} (e.g. `Linear_no_bias_cpu`) # ${module_qualified_name} (e.g. `torch::nn::Linear`) # ${cpp_args_construction_stmts} # ${cpp_constructor_args} # ${device} # ${cpp_forward_args_symbols} TORCH_NN_MODULE_TEST_FORWARD_BACKWARD = Template(""" void ${module_variant_name}_test_forward_backward( const std::string& arg_dict_file_path, const std::string& module_file_path, const std::string& forward_output_file_path, const std::string& backward_grad_dict_file_path) { pybind11::gil_scoped_release no_gil; // Declare arguments auto arg_dict = load_dict_from_file(arg_dict_file_path); ${cpp_args_construction_stmts}; // Construct module and load params/buffers from Python module ${module_qualified_name} module${cpp_constructor_args}; module->to(std::string("${device}")); torch::load(module, module_file_path); // Some modules (such as `RReLU`) create random tensors in their forward pass. // To make sure the random tensors created are the same in Python/C++, we need // to set the RNG seed manually. torch::manual_seed(0); // Forward pass auto cpp_output = module(${cpp_forward_args_symbols}); // Save the output into a file to be compared in Python later write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path); // Backward pass cpp_output.sum().backward(); // Put all gradients into a c10::Dict, save it into a file to be compared in Python later c10::Dict grad_dict; for (const auto& param : module->named_parameters()) { torch::Tensor grad = param.value().grad(); if (grad.is_sparse()) { grad_dict.insert(param.key() + "_grad_indices", grad.coalesce().indices()); grad_dict.insert(param.key() + "_grad_values", grad.coalesce().values()); } else { grad_dict.insert(param.key() + "_grad", grad); } } write_ivalue_to_file(torch::IValue(grad_dict), backward_grad_dict_file_path); } """) def run_python_forward_backward(unit_test_class, test_params): device = test_params.device module = test_params.test_instance.constructor(*test_params.test_instance.constructor_args).to(device) inputs = set_python_tensors_requires_grad(move_python_tensors_to_device( [arg_value for _, arg_value in test_params.arg_dict['input']], device)) inputs += move_python_tensors_to_device( [arg_value for _, arg_value in test_params.arg_dict['target']], device) inputs += move_python_tensors_to_device( [arg_value for _, arg_value in test_params.arg_dict['extra_args']], device) # Some modules (such as `RReLU`) create random tensors in their forward pass. # To make sure the random tensors created are the same in Python/C++, we need # to set the RNG seed manually. torch.manual_seed(0) # Forward pass python_output = module(*inputs) # NOTE: This is a workaround to allow any module to be traced. # We can do this because we are only interested in transferring # the Python module's parameters and buffers to the C++ module. module.forward = types.MethodType(lambda self, input: input, module) script_module = torch.jit.trace(module, torch.tensor(0)) # Backward pass python_output.sum().backward() # Put all gradients into a dict, to be compared later python_grad_dict = {} for name, param in module.named_parameters(): grad = param.grad if grad.is_sparse: python_grad_dict[name + "_grad_indices"] = grad.coalesce().indices() python_grad_dict[name + "_grad_values"] = grad.coalesce().values() else: python_grad_dict[name + "_grad"] = grad return script_module, python_output, python_grad_dict def test_forward_backward(unit_test_class, test_params): module_variant_name = test_params.module_variant_name cpp_tmp_folder = test_params.cpp_tmp_folder # Remove the temporary folder if it exists already try_remove_folder(cpp_tmp_folder) os.mkdir(cpp_tmp_folder) # Run forward and backward on Python module script_module, python_output, python_grad_dict = run_python_forward_backward(unit_test_class, test_params) # Save Python module and arguments to be used from C++ function module_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'module') arg_dict_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'arg_dict') script_module.save(module_file_path) serialize_arg_dict_as_script_module(test_params.arg_dict).save(arg_dict_file_path) cpp_test_name = '{}_test_forward_backward'.format(test_params.module_variant_name) cpp_test_fn = getattr(unit_test_class.module_impl_check_cpp_module, cpp_test_name) def run_cpp_test_fn_and_check_output(): forward_output_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'forward_output') backward_grad_dict_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'backward_grad_dict') cpp_test_fn(arg_dict_file_path, module_file_path, forward_output_file_path, backward_grad_dict_file_path) cpp_output = torch.load(forward_output_file_path) cpp_grad_dict = torch.load(backward_grad_dict_file_path) # Check that forward outputs are equal unit_test_class.assertEqual(python_output, cpp_output, message=generate_error_msg("forward output", cpp_output, python_output)) # Check that module parameter gradients are equal after backward pass unit_test_class.assertEqual( len(python_grad_dict), len(cpp_grad_dict), message=generate_error_msg("# of parameters", len(cpp_grad_dict), len(python_grad_dict))) for key in python_grad_dict: param_name = None for suffix in ['_grad', '_grad_indices', '_grad_values']: if key.endswith(suffix): param_name = key[:-len(suffix)] break assert param_name is not None sparsity_str = 'sparse' if key.endswith('_grad_indices') or key.endswith('_grad_values') else 'dense' unit_test_class.assertTrue( key in cpp_grad_dict, msg=generate_error_msg( "\"Does module have a parameter named `{}` with {} gradient?\"".format(param_name, sparsity_str), False, True)) unit_test_class.assertEqual( python_grad_dict[key], cpp_grad_dict[key], message=generate_error_msg( "`{}`'s {} gradient (`{}`)".format(param_name, sparsity_str, key), cpp_grad_dict[key], python_grad_dict[key])) run_cpp_test_fn_and_check_output() # Remove temporary folder that stores C++ outputs try_remove_folder(cpp_tmp_folder) def compute_module_name(test_params_dict): fullname = test_params_dict.get('fullname', None) if fullname: module_name = fullname.split('_')[0] else: module_name = test_params_dict.get('module_name') return module_name def process_test_params_for_module(test_params_dict, device, test_instance_class): module_name = compute_module_name(test_params_dict) test_params_dict['constructor'] = test_params_dict.get('constructor', getattr(torch.nn, module_name)) test_instance = test_instance_class(**test_params_dict) assert test_instance.get_name().startswith('test_') # Example output: `BCELoss_weights_cuda` module_variant_name = test_instance.get_name()[5:] + (('_' + device) if device != 'cpu' else '') if 'constructor_args' in test_params_dict: assert 'cpp_constructor_args' in test_params_dict, ( "If `constructor_args` is present in test params dict, to enable C++ API parity test, " "`cpp_constructor_args` must be present in:\n{}" "If you are interested in adding the C++ API parity test, please see:\n" "NOTE [How to check NN module / functional API parity between Python and C++ frontends]. \n" "If not, please add `test_cpp_api_parity=False` to the test params dict and file an issue about this." ).format(pprint.pformat(test_params_dict)) return TorchNNModuleTestParams( module_name=module_name, module_variant_name=module_variant_name, test_instance=test_instance, cpp_constructor_args=test_params_dict.get('cpp_constructor_args', ''), arg_dict=compute_arg_dict(test_params_dict, test_instance), has_parity=test_params_dict.get('has_parity', True), device=device, cpp_tmp_folder=tempfile.mkdtemp(), ) def write_test_to_test_class( unit_test_class, test_params_dict, test_instance_class, parity_table, devices): assert not is_torch_nn_functional_test(test_params_dict) module_name = compute_module_name(test_params_dict) assert hasattr(torch.nn, module_name), ( "`torch.nn` doesn't have module `{}`. " "If you are adding a new test, please set `fullname` using format `ModuleName_desc` " "or set `module_name` using format `ModuleName` in the module test dict:\n{}" ).format(module_name, pprint.pformat(test_params_dict)) module_full_name = 'torch::nn::' + module_name assert module_full_name in parity_table['torch::nn'], ( "Please add `{}` entry to `torch::nn` section of `test/cpp_api_parity/parity-tracker.md`. " "(Discovered while processing\n{}.)").format(module_full_name, pprint.pformat(test_params_dict)) for device in devices: test_params = process_test_params_for_module( test_params_dict=test_params_dict, device=device, test_instance_class=test_instance_class, ) unit_test_name = 'test_torch_nn_{}'.format(test_params.module_variant_name) unit_test_class.module_test_params_map[unit_test_name] = test_params def test_fn(self): test_forward_backward( unit_test_class=self, test_params=unit_test_class.module_test_params_map[self._testMethodName]) test_fn = decorate_test_fn( test_fn=test_fn, test_cuda=test_params_dict.get('test_cuda', True), has_impl_parity=parity_table['torch::nn'][module_full_name][0] and test_params_dict.get('has_parity', True), device=device) add_test(unit_test_class, unit_test_name, test_fn) def generate_test_cpp_sources(test_params, template): device = test_params.device cpp_constructor_args = test_params.cpp_constructor_args if cpp_constructor_args != '': cpp_constructor_args = '({})'.format(cpp_constructor_args) cpp_args_construction_stmts, cpp_forward_args_symbols = \ compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params) test_cpp_sources = template.substitute( module_variant_name=test_params.module_variant_name, module_qualified_name='torch::nn::{}'.format(test_params.module_name), cpp_args_construction_stmts=";\n ".join(cpp_args_construction_stmts), cpp_constructor_args=cpp_constructor_args, cpp_forward_args_symbols=", ".join(cpp_forward_args_symbols), device=device, ) return test_cpp_sources # Build all C++ tests together, instead of once per test. def build_cpp_tests(unit_test_class, print_cpp_source=False): assert len(unit_test_class.module_test_params_map) > 0 cpp_sources = TORCH_NN_COMMON_TEST_HARNESS + SAMPLE_MODULE_CPP_SOURCE functions = [] for test_name, test_params in unit_test_class.module_test_params_map.items(): cpp_sources += generate_test_cpp_sources( test_params=test_params, template=TORCH_NN_MODULE_TEST_FORWARD_BACKWARD) functions.append('{}_test_forward_backward'.format(test_params.module_variant_name)) if print_cpp_source: print(cpp_sources) cpp_module = compile_cpp_code_inline( name='module_impl_check', cpp_sources=cpp_sources, functions=functions) unit_test_class.module_impl_check_cpp_module = cpp_module