import collections import logging import math import re import types from typing import Dict, List try: import numpy as np except ModuleNotFoundError: np = None import torch._C import torch.fx import torch.nn import torch.onnx.operators from torch._dynamo.variables import UserFunctionVariable from .. import config, variables from ..allowed_functions import torch_get_name from ..exc import unimplemented from ..source import GeneratorStateSource from ..utils import ( check_constant_args, check_unspec_python_args, istype, product, proxy_args_kwargs, specialize_args_kwargs, tensortype_to_dtype, ) from .base import VariableTracker from .ctx_manager import ( AutocastModeVariable, NullContextVariable, TorchFunctionDisableVariable, ) from .dicts import ConstDictVariable from .distributed import is_constant_pg_functions, is_from_local, ProcessGroupVariable from .higher_order_ops import TorchHigherOrderOperatorVariable from .lists import ListVariable, TupleVariable from .tensor import TensorWithTFOverrideVariable log = logging.getLogger(__name__) # TODO(voz): Maybe rename these later tensor_dunder_fns = [ torch.Tensor.__rmatmul__, torch.Tensor.__rmod__, torch.Tensor.__rpow__, torch.Tensor.__rsub__, torch._C._TensorBase.__radd__, torch._C._TensorBase.__rmul__, torch._C._TensorBase.__ror__, torch._C._TensorBase.__rxor__, torch._C._TensorBase.__rand__, ] torch_special_class_types = (torch._C.Generator,) REWRITE_OPS_TO_TENSOR_SIZE_METHOD = [ torch.onnx.operators.shape_as_tensor, torch._shape_as_tensor, ] constant_fold_functions = [ torch._assert, torch._utils._get_device_index, torch.cuda.is_available, torch.device, torch.distributed.is_available, torch.finfo, torch.get_autocast_gpu_dtype, torch.get_default_dtype, torch.iinfo, torch.is_autocast_cache_enabled, torch.is_autocast_cpu_enabled, torch.is_autocast_enabled, torch.is_complex, torch.is_floating_point, torch.nn.functional._Reduction.get_enum, torch._C._get_privateuse1_backend_name, ] if torch.distributed.is_available(): constant_fold_functions.append(torch.distributed.is_initialized) # TODO(voz): perhaps a decorator? This is rather readable for now tho, and not a public API. def remap_as_fn___radd__(*args): return torch._C._TensorBase.__radd__(*args) def remap_as_fn___rmul__(*args): return torch._C._TensorBase.__rmul__(*args) def remap_as_fn___ror__(*args): return torch._C._TensorBase.__ror__(*args) def remap_as_fn___rxor__(*args): return torch._C._TensorBase.__rxor__(*args) def remap_as_fn___rand__(*args): return torch._C._TensorBase.__rand__(*args) tensor_dunder_fns_remap = { torch._C._TensorBase.__radd__: remap_as_fn___radd__, torch._C._TensorBase.__rmul__: remap_as_fn___rmul__, torch._C._TensorBase.__ror__: remap_as_fn___ror__, torch._C._TensorBase.__rxor__: remap_as_fn___rxor__, torch._C._TensorBase.__rand__: remap_as_fn___rand__, } try: # Wed need to monkeypatch transformers here, sadly. # TODO(voz): Upstream to transformers lib import transformers def _dynamo_overriden_transformers_eq(self, other): if not hasattr(other, "__dict__"): return False return self.__dict__ == other.__dict__ transformers.configuration_utils.PretrainedConfig.__eq__ = ( _dynamo_overriden_transformers_eq ) except ImportError: pass class TorchVariable(VariableTracker): """Points to a module or method in torch.*""" def __init__(self, value, **kwargs): super().__init__(**kwargs) if ( isinstance(value, collections.abc.Hashable) and value in tensor_dunder_fns_remap ): value = tensor_dunder_fns_remap[value] self.value = value # the remainder of this is just optional debug checks try: self_should_be_none = getattr(self.value, "__self__", None) except RuntimeError as e: assert "No such operator" in str(e), str(e) self_should_be_none = None # assert "_ntuple..parse" not in str(value) if self_should_be_none is None: pass elif isinstance(self_should_be_none, types.ModuleType): # weird ones like torch.nn.functional.avg_pool2d have __self__ name = self_should_be_none.__name__ assert re.match(r"^(torch|math)([.]|$)", name), f"__self__ set to {name}" elif isinstance( self_should_be_none, type(torch._C._get_tracing_state.__self__) ): # some _C functions have __self__ as a null capsule pass elif isinstance(self_should_be_none, torch_special_class_types): pass else: raise AssertionError(f"{value} found with __self__ set") def __repr__(self): return f"TorchVariable({self.value})" def call_hasattr(self, tx, name): result = hasattr(self.value, name) return variables.ConstantVariable(result).add_options(self) def unique_var_name(self): name = torch_get_name(self.value, f"allowed_fn_{id(self.value)}") return "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name) def reconstruct(self, codegen): return codegen.setup_globally_cached(self.unique_var_name(), self.value, False) def as_proxy(self): return self.value def python_type(self): if isinstance(self.value, (torch.Tensor, torch.nn.Module)): return type(self.value) if isinstance(self.value, type): return type return super().python_type() def as_python_constant(self): return self.value def can_constant_fold_through(self): if self.value in constant_fold_functions: return True return getattr(self.value, "__module__", None) == "math" def call_function( self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]" ) -> "VariableTracker": from . import ( ConstantVariable, CUDAStreamContextVariable, CUDAStreamVariable, DeterministicAlgorithmsVariable, DisabledSavedTensorsHooksVariable, GradModeVariable, SymNodeVariable, TensorVariable, UserDefinedObjectVariable, ) from .builder import wrap_fx_proxy, wrap_fx_proxy_cls constant_args = check_constant_args(args, kwargs) unspec_python_args = check_unspec_python_args(args, kwargs) options = VariableTracker.propagate(self, args, kwargs.values()) if self.value is torch._functorch.vmap.vmap_impl: return TorchHigherOrderOperatorVariable.make( self.value, source=self.source, ).call_function(tx, args, kwargs) elif self.value in config.constant_functions: assert not args and not kwargs return ConstantVariable(config.constant_functions[self.value], **options) elif self.value is torch._functorch.eager_transforms.grad_impl: op = TorchHigherOrderOperatorVariable.make( self.value, source=self.source, ).call_function(tx, args, kwargs) return op elif self.can_constant_fold_through() and (constant_args or unspec_python_args): args, kwargs = specialize_args_kwargs(tx, args, kwargs) # constant fold return ConstantVariable( self.as_python_constant()( *[x.as_python_constant() for x in args], **{k: v.as_python_constant() for k, v in kwargs.items()}, ), **options, ) elif istype(self.value, type) and issubclass(self.value, torch.nn.Module): if self.value is torch.nn.CrossEntropyLoss: return self._call_cross_entropy_loss(tx, args, kwargs, options) else: return variables.UserDefinedClassVariable( self.value, source=self.source, **options ).call_function(tx, args, kwargs) elif self.value in (torch.is_tensor, torch.overrides.is_tensor_like): assert len(args) == 1 if isinstance(args[0], TensorVariable) or ( self.value is torch.overrides.is_tensor_like and isinstance(args[0], UserDefinedObjectVariable) and hasattr(args[0].value, "__torch_function__") ): return ConstantVariable(True, **options) else: return ConstantVariable(False, **options) elif self.value in ( torch.is_floating_point, torch.is_complex, ): input_arg = None if args: input_arg = args[0] else: assert "input" in kwargs input_arg = kwargs["input"] if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None: if self.value is torch.is_floating_point: return ConstantVariable( input_arg.dtype.is_floating_point, **options ) elif self.value is torch.is_complex: return ConstantVariable(input_arg.dtype.is_complex, **options) else: raise AssertionError(f"calling {self.value}") elif ( self.value is torch.numel and isinstance(args[0], TensorVariable) and args[0].size is not None ): return ConstantVariable(product(args[0].size), **options) elif self.value in REWRITE_OPS_TO_TENSOR_SIZE_METHOD: assert len(args) == 1 assert isinstance(args[0], TensorVariable) return args[0].call_method(tx, "size", [], {}) elif self.value in ( torch.nn.modules.utils._single, torch.nn.modules.utils._pair, torch.nn.modules.utils._triple, torch.nn.modules.utils._quadruple, torch.nn.modules.utils._ntuple, ): return self._call_ntuple(tx, args, kwargs, options) elif self.value is torch.no_grad: return GradModeVariable.create(tx, False, **options) elif self.value is torch.enable_grad: return GradModeVariable.create(tx, True, **options) elif self.value is torch.set_grad_enabled and len(args) == 1: return GradModeVariable.create(tx, args[0].as_python_constant(), **options) elif self.value is torch.is_grad_enabled: assert not (args or kwargs) return ConstantVariable(torch.is_grad_enabled(), **options).add_guards( GradModeVariable._guards_singleton ) elif self.value is torch.use_deterministic_algorithms and len(args) == 1: return DeterministicAlgorithmsVariable.create( tx, args[0].as_python_constant(), **options ) elif self.value is torch.are_deterministic_algorithms_enabled: assert not (args or kwargs) return ConstantVariable( torch.are_deterministic_algorithms_enabled(), **options ).add_guards(DeterministicAlgorithmsVariable._guards_singleton) elif self.value is torch.autograd.graph.disable_saved_tensors_hooks: assert len(args) == 1 return DisabledSavedTensorsHooksVariable.create( tx, args[0].as_python_constant(), **options ) elif self.value is torch._C._is_torch_function_enabled: assert not (args or kwargs) return ConstantVariable( tx.output.torch_function_enabled, **options ).add_guards(TorchFunctionDisableVariable._guards_singleton) elif self.value is torch._C.DisableTorchFunctionSubclass: assert not (args or kwargs) return TorchFunctionDisableVariable.create(tx, **options) elif self.value is torch.cuda.stream: log.warning( "torch.cuda.stream() not fully supported, streams may be ignored" ) assert len(args) == 1 return CUDAStreamContextVariable.create(tx, args[0], **options) elif self.value is torch.cuda.streams.Stream: return wrap_fx_proxy_cls( CUDAStreamVariable, tx, tx.output.create_proxy( "call_function", torch.cuda.streams.Stream, (), {}, ), **options, ) elif self.value is torch.from_numpy: if not np: unimplemented("torch.from_numpy. NumPy is not available") assert len(args) == 1, f"Got arguments {args}" assert not kwargs t = args[0] from .tensor import NumpyNdarrayVariable if isinstance(t, NumpyNdarrayVariable): # TODO: mark the tensor as non-resizable return wrap_fx_proxy_cls( target_cls=TensorVariable, tx=tx, proxy=tx.output.create_proxy( "call_function", torch.detach, *proxy_args_kwargs(args, {}), ), example_value=None, **options, ) else: unimplemented(f"torch.from_numpy(<{type(t)}>)") elif len(args) > 0 and isinstance(args[0], TensorWithTFOverrideVariable): # This code block implements inlining the __torch_function__ # override of a tensor. tensor_with_tf_override = args[0] # TODO(future PR): make this implement the full __torch_function__ API # instead of assuming the relevant override is in the first argument. args[0] = args[0].tensor_variable unwrapped = TensorWithTFOverrideVariable.inline_torch_function_unwrapped( tx, self, tensor_with_tf_override.orig_tensor_variable_source, tensor_with_tf_override.subclass_torch_function__func, tensor_with_tf_override.subclass_type, options, args, kwargs, ) # The wrapping here follows the logic in # `torch.Tensor.__torch_function__`. if self.value in torch.overrides.get_default_nowrap_functions(): return unwrapped return TensorWithTFOverrideVariable( unwrapped, tensor_with_tf_override.orig_tensor_variable_source, tensor_with_tf_override.subclass_torch_function__func, tensor_with_tf_override.subclass_type, ) elif self.value in [ torch.amp.autocast_mode.autocast, torch.cuda.amp.autocast, torch.cpu.amp.autocast, ]: return AutocastModeVariable.create(self.value, args, kwargs) elif self.value in ( torch.profiler.profile, torch.profiler.record_function, torch.autograd.profiler.profile, torch.autograd.profiler.record_function, ): log.warning("Profiler function %s will be ignored", self.value) return NullContextVariable(**options) elif self.value is torch.autograd._profiler_enabled: unimplemented("torch.autograd._profiler_enabled not supported yet") elif self.value is torch.jit.annotate: assert len(args) == 2 return args[1] elif self.value is torch.backends.cudnn.is_acceptable: # is_acceptable(tensor) returns true if # (a) tensor dtype/device are supported by cudnn # (b) cudnn is available # (c) some initialization has completed # technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version) assert ( len(args) == 1 or "tensor" in kwargs ), "Expect 1 input to cudnn.is_acceptable" tensor_variable = args[0] if len(args) > 0 else kwargs["tensor"] assert isinstance( tensor_variable, TensorVariable ), "Expect input to cudnn.is_acceptable to be a tensor" tensor_inp = torch.tensor( 0, dtype=tensor_variable.dtype, device=tensor_variable.device ) return ConstantVariable( torch.backends.cudnn.is_acceptable(tensor_inp), **options ) elif self.value is torch.nn.Parameter: # https://github.com/pytorch/pytorch/issues/99569 unimplemented("torch.nn.Parameter not supported") if ( self.value.__name__ == "get_state" and hasattr(self.value, "__self__") and isinstance(self.value.__self__, torch._C.Generator) ): def get_state_from_generator(): return self.value() return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", get_state_from_generator, *proxy_args_kwargs(args, kwargs), ), example_value=self.value(), source=GeneratorStateSource( self.value.__self__.device.type, self.value.__self__.initial_seed() ), **options, ) if ( self.value.__name__ == "set_state" and hasattr(self.value, "__self__") and isinstance(self.value.__self__, torch._C.Generator) ) or self.value == torch.random.set_rng_state: assert len(args) == 1 assert isinstance(args[0], TensorVariable) unimplemented( "TODO: make torch.random.set_rng_state work with FakeTensor/aot_autograd" ) # In fake tensor case, this state doesn't matter, but # it needs to be valid to not segfault. Pull a real tensor out. # The value won't matter since we are running with fake tensors anyway, so rng doesn't matter. # However, it is imperative to record the call_function in the graph with the true args # (Not the fake example_value) - for the sake of graph correctness. if self.value == torch.random.set_rng_state: example_value = torch.random.get_rng_state() else: example_value = self.value.__self__.get_state() self.value.__module__ = self.__module__ return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", self.value, *proxy_args_kwargs(args, kwargs), ), example_value=example_value, **options, ) elif ( self.value == torch.numel and len(args) == 1 and isinstance(args[0], TensorVariable) and len(kwargs) == 0 ): # TODO(voz): This is rewritten as a call_method because # torch.numel(x) w/ sym shapes raises a RuntimeError and x.numel() does not return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_method", "numel", *proxy_args_kwargs(args, kwargs), ), **options, ) elif ( self.value is torch.ops.aten.sym_size and len(args) == 2 and len(kwargs) == 0 and isinstance(args[0], TensorVariable) ): # we see this when retracing already traced code return args[0].call_method(tx, "size", [args[1]], {}) elif ( self.value is torch.ops.aten.sym_stride and len(args) == 2 and len(kwargs) == 0 and isinstance(args[0], TensorVariable) ): return args[0].call_method(tx, "stride", [args[1]], {}) elif ( self.value == torch.addcdiv and len(args) == 3 and "value" in kwargs and len(kwargs) == 1 ): # decompose addcdiv into constituent ops, prevents a graph break due to converting # value to a scalar result = TorchVariable(torch.div, **options).call_function(tx, args[1:], {}) result = TorchVariable(torch.mul, **options).call_function( tx, [result, kwargs["value"]], {} ) return TorchVariable(torch.add, **options).call_function( tx, [args[0], result], {} ) elif is_constant_pg_functions(self.value): # becuase the input is a "ProcessGroupVariable", we'll be guarding on its # ID_MATCH based on how it was constructed. # We desugar it at trace-time into ranks by directly calling util # bake the result into the trace assert len(args) == 1, "Expected one arg (pg)" assert isinstance(args[0], ProcessGroupVariable) invocation_result = self.value(args[0].as_python_constant()) # Note - while we *could* cook up sources around invocations, like a FunctionSource # the space of invoking functions in the middle of the guard chain is very iffy. As such, # guard propagaiton via options is the best we can do. from .builder import SourcelessBuilder return SourcelessBuilder()(tx, invocation_result).add_options(options) elif is_from_local(self.value): # rewrite non-primitive args/kwargs to be included in the on-the-fly prim function # and rewrite args to have only proxyable args, then insert call_function args_as_value = [x.as_python_constant() for x in args[1:]] def fn_with_prim_types(x, **kwargs): return self.value(x, *args_as_value, **kwargs) # attach the same function name for better debugging fn_with_prim_types.__name__ = "prim " + self.value.__name__ return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", fn_with_prim_types, *proxy_args_kwargs([args[0]], kwargs), ), **options, ) elif self.value == torch.nn.init._calculate_correct_fan: return UserFunctionVariable( torch.nn.init._calculate_correct_fan, **options ).call_function(tx, args, {}) elif self.value == torch.utils._pytree.tree_flatten: if len(args) != 1: unimplemented("Unsupported flatten with len(args) != 1") flattened, spec = torch.utils._pytree.tree_flatten(args[0]) return TupleVariable( [ListVariable(flattened), ConstantVariable(spec)], **options ) elif self.value == torch.utils._pytree.tree_unflatten: if len(args) != 2: unimplemented("Unsupported unflatten with len(args) != 2") unflattened = torch.utils._pytree.tree_unflatten(args[0], args[1].value) def _wrap_in_dynamo_variables(container): if isinstance(container, VariableTracker): return container if isinstance(container, list): return ListVariable( [_wrap_in_dynamo_variables(elem) for elem in container], **options, ) if isinstance(container, tuple): return TupleVariable( [_wrap_in_dynamo_variables(elem) for elem in container], **options, ) if isinstance(container, dict): return ConstDictVariable( {k: _wrap_in_dynamo_variables(v) for k, v in container.items()}, type(container), **options, ) return _wrap_in_dynamo_variables(unflattened) elif self.value == torch.fx._pytree.tree_flatten_spec: if len(args) != 2: unimplemented("Unsupported flatten_spec with len(args) != 2") flattened, spec = torch.fx._pytree.tree_flatten_spec(args[0], args[1].value) return TupleVariable( [ListVariable(flattened), ConstantVariable(spec)], **options ) elif self.value == torch.utils._pytree.tree_map_only: if len(args) != 3: unimplemented("Unsupported tree_map_only with len(args) != 3") ty = args[0].value # type fn = args[1] # map fn tree = args[2] # tree def map_fn(v): if ty == v.python_type(): return fn.call_function(tx, [v], {}) else: return v return torch.utils._pytree.tree_map(map_fn, tree) elif isinstance(self.value, types.ModuleType): unimplemented("TypeError(\"'module' object is not callable\")") else: any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args) all_ints_or_floats = all( isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable)) for x in args ) bin_ops = {"add", "sub", "mul", "div", "sqrt"} if ( getattr(self.value, "__module__", "") == "torch" and self.value.__name__ in bin_ops and any_symints_or_symfloats and all_ints_or_floats ): msg = f"""\ Calling {str(self.value)} on only torch.SymInt arguments is not yet supported. To support this behavior, we need to allow const-propping tensors that store symint data. For now, dynamo will explicitly graph break when it encounters user code with this behavior. """ log.warning(msg) raise unimplemented(msg) # Handle sth like torch.LongTensor(list(np.int64, np.int64, ...)), # as FX symbolic trace doesn't support numpy int/float as base types. if ( np and self.value in tensortype_to_dtype and len(args) == 1 and isinstance(args[0], ListVariable) and args[0].is_python_constant() ): for x in args[0].items: if isinstance(x.value, np.generic): x.value = x.value.item() # TODO(voz): Replace w/ dynamic shape rewrite table. # Ideally, we would be able to do this at ctor time, but alas we need a combination # of value + args to determine this. fn_ = self.value if any(isinstance(x, SymNodeVariable) for x in args): if self.value == math.sqrt: from torch.fx.experimental.symbolic_shapes import sym_sqrt fn_ = sym_sqrt if fn_ is torch.tensor: def check_any_unspec(x): # NB: This includes UnspecializedPythonVariable if isinstance(x, (TensorVariable, SymNodeVariable)): return True elif isinstance(x, ListVariable): return any(check_any_unspec(y) for y in x.items) # TODO: there maybe other recursive structures you need to # check else: return False # NB: OK to pass torch.tensor(tensor), this will trace fine # TODO: But torch.tensor(unspec) would not trace fine. Not # handled right now. data_arg = None if args: data_arg = args[0] elif "data" in kwargs: data_arg = kwargs["data"] if isinstance(data_arg, ListVariable) and check_any_unspec(data_arg): unimplemented("torch.tensor call with list of unspec") tensor_variable = wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", fn_, *proxy_args_kwargs(args, kwargs), ), **options, ) if "out" in kwargs and not ( isinstance(kwargs["out"], variables.ConstantVariable) and kwargs["out"].as_python_constant() is None ): # out variants of torch operators like torch.sort and # torch.sigmoid mutate the tensors in the out field. Track such # tensors and rewrite the symbolic locals. if isinstance(tensor_variable, TupleVariable): assert isinstance(kwargs["out"], (TupleVariable, ListVariable)) output_tensor_names = [ tx.find_symbolic_locals_name(x) for x in kwargs["out"].items ] for idx, name in enumerate(output_tensor_names): if name in tx.symbolic_locals: tx.symbolic_locals[name] = tensor_variable.items[idx] elif isinstance(tensor_variable, TensorVariable): assert isinstance(kwargs["out"], TensorVariable) name = tx.find_symbolic_locals_name(kwargs["out"]) if name in tx.symbolic_locals: tx.symbolic_locals[name] = tensor_variable else: unimplemented(f"out variant of {type(kwargs['out'])}") return tensor_variable def _call_cross_entropy_loss(self, tx, args, kwargs, options): """ functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0 non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0 non functional loss call: input, target, optional_output """ from . import ConstantVariable def normalize_args( weight=ConstantVariable(None), size_average=ConstantVariable(None), ignore_index=ConstantVariable(-100), reduce=ConstantVariable(None), reduction=ConstantVariable("mean"), label_smoothing=ConstantVariable(0.0), ): return ( weight, size_average, ignore_index, reduce, reduction, label_smoothing, ) ( weight, size_average, ignore_index, reduce_arg, reduction, label_smoothing, ) = normalize_args(*args, **kwargs) def fake_cross_entropy_loss(input, target): from .builder import wrap_fx_proxy return wrap_fx_proxy( tx=tx, proxy=tx.output.create_proxy( "call_function", torch.nn.functional.cross_entropy, *proxy_args_kwargs( [ input, target, weight, size_average, ignore_index, reduce_arg, reduction, label_smoothing, ], {}, ), ), **VariableTracker.propagate( [ self, weight, size_average, ignore_index, reduce_arg, reduction, label_smoothing, input, target, ] ), ) return variables.LambdaVariable(fake_cross_entropy_loss, **options) def _call_ntuple(self, tx, args, kwargs, options): """inline behavior of torch.nn.modules.utils._ntuple""" if self.value is torch.nn.modules.utils._ntuple: count = args[0].as_python_constant() else: count = self.value.__closure__[0].cell_contents assert isinstance(count, int) def handle_ntuple(value): if value.has_unpack_var_sequence(tx): return variables.TupleVariable( list(value.unpack_var_sequence(tx)), **VariableTracker.propagate(self, value, args, kwargs.values()), ) elif value.is_python_constant(): # constant prop through it return variables.ConstantVariable( torch.nn.modules.utils._ntuple(count)(value.as_python_constant()), **VariableTracker.propagate(self, value, args, kwargs.values()), ) else: unimplemented(f"torch.nn.modules.utils._ntuple({value})") if self.value is torch.nn.modules.utils._ntuple: return variables.LambdaVariable(handle_ntuple, **options) else: return handle_ntuple(args[0])