import logging import torch from torch._dynamo import eval_frame from torch._dynamo.utils import counters from torch._functorch.aot_autograd import aot_module_simplified log = logging.getLogger(__name__) def aot_autograd(**kwargs): def compiler_fn(gm: torch.fx.GraphModule, example_inputs): import functorch.compile # Hack to get around circular import problems with aot_eager_decomp_partition if callable(kwargs.get("decompositions")): kwargs["decompositions"] = kwargs["decompositions"]() # TODO: stop monkeypatching here (without even cleaning up, UGH!) functorch.compile.config.use_functionalize = True functorch.compile.config.use_fake_tensor = True counters["aot_autograd"]["total"] += 1 use_fallback = False if use_fallback: log.debug("Unable to use AOT Autograd because graph has mutation") counters["aot_autograd"]["not_ok"] += 1 return gm # OK attempt to compile def _wrapped_bw_compiler(*args, **kwargs): # stop TorchDynamo from trying to compile our generated backwards pass return eval_frame.disable(eval_frame.disable(bw_compiler)(*args, **kwargs)) bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"] kwargs["bw_compiler"] = _wrapped_bw_compiler from torch._inductor.debug import enable_aot_logging try: # NB: NOT cloned! with enable_aot_logging(): cg = aot_module_simplified(gm, example_inputs, **kwargs) counters["aot_autograd"]["ok"] += 1 return eval_frame.disable(cg) except Exception: counters["aot_autograd"]["not_ok"] += 1 raise return compiler_fn def mem_efficient_fusion_kwargs(use_decomps): from functorch.compile import ( default_decompositions, min_cut_rematerialization_partition, ts_compile, ) kwargs = { # these are taken from memory_efficient_fusion() "fw_compiler": ts_compile, "bw_compiler": ts_compile, "partition_fn": min_cut_rematerialization_partition, } if use_decomps: kwargs["decompositions"] = default_decompositions return kwargs